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Abstract

We show how to calculate the maximum number of edits per character needed
to convert any string in one regular language to a string in another language.
Our algorithm makes use of a local determinization procedure applicable to
a subclass of distance automata. We then show how to calculate the same
property when the editing needs to be done in streaming fashion, by a finite
state transducer, using a reduction to mean-payoff games. In this case, we
show that the optimal streaming editor can be produced in P.
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1. Introduction

Edit distance is a well-studied metric between strings, measuring how
many operations are needed to get from one string to another. In this paper
we look for natural (asymmetric) analogs for regular languages: how many
edits does it require to get from a word in regular language R to a word
in regular language T , in the worst case? Our notation is motivated by
considering R to be a restriction – a constraint that the input is guaranteed
to satisfy – and T to be a target – a constraint that we want to enforce.

In a prior work [1], we considered the basic question of whether one can
get from a word in R to a word in T with a finite, uniformly bounded number
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of edits. One of the main results of [1] was a characterization of the pairs
(R,T ) for which such a uniform bound exists.

Example 1. Consider the regular languages R = a∗ b∗ and T = a∗ c b∗.
Clearly, any string in R can be converted to a string in T with at most 1 edit
operation.

Such a bound, when it exists, shows that the language R is “quite close
to being a subset of T” – the gap between strings in R and strings in T is
small. However, having a uniform bound on the number of edits is a strong
requirement. In this paper we look not at the absolute number of edits
required to get from R to T , but rather at the percentage of letters that need
to be edited.

Example 2. Consider the languages R = (a + b)∗ and T = (ab)∗. Roughly,
for any pair of consecutive occurrences of the letter a in the input, we will
have to perform one edit in order to ensure alternation in the output. In
particular, the number of edits required to get from a string in R to a string
in T is unbounded. On the other hand, it is clear that, in the worst case (i.e.,
a2n), one needs to edit approximately half of the letters in order to produce a
string in T – in this case, we say that all strings in R can be repaired into T
with normalized cost at most 1

2 .

We measure the gap from a restriction language R to a target language
T via the worst case, over all strings u ∈ R, of the number of edits needed to
bring u into T divided by the length of u. Since we want the definition to be
robust to a finite number of outliers, we take the limit of this quantity as the
strings are of larger and larger length – this is the asymptotic (normalized)
cost in getting from R to T . This gives us a measure of the distortion needed
to get from R to T , lying always between 0 and 1.

In our prior work [1] we have given algorithms for determining when the
absolute cost of repairing R into T is uniformly bounded, and in this case
compute a bound. Similarly, the main result of the present paper is an
algorithm that computes the asymptotic cost of repairing R into T . The
techniques used for the asymptotic cost analysis are radically different from
those used for the bounded repair problem. Specifically, they rely on ideas
from the theory of distance automata [2], and in particular on an application
of determinization of distance automata, closely related to Mohri’s deter-
minization procedure [3].
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We then turn to the setting where the repair is required to be done in
streaming fashion, producing the edits immediately on seeing the input letter.
We measure a streaming repair processor by the number of edits per character
it requires to get from any string in R to a string in T , again looking at the
limit as the string length gets large. We accordingly define the streaming
asymptotic cost to be the optimal cost of a streaming processor. We show
that this quantity can also be calculated effectively, using techniques from
mean-payoff games.

Example 3. Consider R = (a+b) c∗(a++b+) and T = a c∗a++b c∗b+. One can
get from R to T by only editing the initial letter: so the asymptotic cost is
0. However, a streaming strategy must commit to changing the initial letter
or leaving it be: if it makes the “incorrect” choice, it will have to edit an
unbounded final segment; thus the streaming asymptotic cost is 1.

The above two results give us the ability to compare the cost one should
pay in editing strings in R to strings in T with an arbitrary processor with
the cost when we are restricted to use a streaming processor. If these are
the same, it shows that streaming processors that edit strings in R to T can
approximate arbitrary processors in worst-case behavior.

In summary our contributions are:

� We present an algorithm for calculating the asymptotic normalized cost
of repairing strings in regular language R to strings in regular language
T , based on locally determinizing a subclass of distance automata.

� We give an algorithm for calculating the optimal asymptotic normalized
cost achieved using a streaming editing algorithm.

Organization. Section 2 gives the preliminaries, while Section 3 defines the
basic problems. Section 4 studies the problem of computing the asymptotic
cost in the non-streaming case, while Section 5 deals with the streaming case.
Section 6 gives conclusions.

2. Preliminaries

Given a word w over an alphabet Σ, we denote by ∣w∣ its length and,
given two positions 1 ≤ i ≤ j ≤ ∣w∣, we denote by w[i] (resp., w[i . . . j]) the
i-th symbol of w (resp., the infix of w starting at position i and ending at
position j).
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Automata. Non-deterministic finite state automata (shortly, NFA) will be
represented by tuples of the form A = (Σ,Q,E, I,F ), where Σ is a finite
alphabet, Q is a finite set of states, E ⊆ Q × Σ ×Q is a transition relation,
and I,F ⊆ Q are sets of initial and finite states. The notions of run and
accepted word are the usual ones. L (A) is the language recognized by A.
If A is a deterministic finite state automaton (DFA), then we usually denote
the unique initial state by q0 and turn its transition relation E into a partial
function δ from Q ×Σ∗ to Q defined by δ(q, ε) = q and δ(q, a u) = δ(q′, u) iff
(q, a, q′) ∈ E.

For technical reasons, it is convenient to assume that an automaton is
trimmed, namely, all its states are reachable from some initial states (i.e.,
they are accessible) and they can reach some final states (i.e., they are co-
accessible). It is worth noticing that, since the decision problems we are going
to deal with are at least NLogSpace-hard and since states of automata
that are not accessible or not co-accessible can be pruned using some simple
NLogSpace reachability analysis, this assumption will have no impact on
our complexity results.

Since automata can be viewed as directed (labeled) graphs, we inherit the
standard definitions and constructions in graph theory. In particular, given
an automaton A = (Σ,Q,E, I,F ) and a state q ∈ Q, we denote by C(q) the
strongly connected component (shortly, SCC) of A that contains all states
mutually reachable from q. We say that a component C of A is final if it
can reach a final state (possibly outside C). Given a set C of states of A
(e.g., a SCC), we denote by A∣C the NFA obtained by restricting A to the
set C and by letting the new initial and final states be all and only the states
in C (note that if C consists of a single transient state, then the language
L (A∣C) recognized by the subautomaton A∣C is empty). Finally, we denote
by dag(A) the directed acyclic (unlabeled) graph of the SCCs of A and by
dag∗(A) the graph obtained from the symmetric and transitive closure of the
edges of dag(A).

Transducers. A (real-time sub-sequential) transducer is a tuple S =
(Σ,∆,Q, δ, q0,Ω), where Σ is a finite input alphabet, ∆ is a finite output
alphabet, Q is a finite set of states, δ is a partial transition function from
Q ×Σ to ∆∗ ×Q, q0 is an initial state, and Ω is a partial function from Q to
∆∗. For every input word u = a1 . . . an ∈ Σ∗, there is at most one run of S on
u of the form

q0
a1/v1ÐÐ→ q1

a2/v2ÐÐ→ . . . an/vnÐÐ→ qn
ε/vn+1ÐÐ→
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where δ(qi, ai) = (vi, qi+1) for all 0 ≤ i < n and Ω(qn) = vn+1. In such a case,
we define the output of S on u to be the word S(u) = v1v2 . . . vnvn+1 (observe
that the transducer outputs an additional, possibly empty, word to be added
on at the end of the computation).

Transducers as above produce an output word immediately on reading an
input character. We will also consider transducers with a bounded amount
of “delay”. A k-lookahead transducer, with k ∈ N, is as above, but where
the transition function δ now has input in Q×Σk+1

� , where Σ� = Σ∪ {�} and
� /∈ Σ. Given an input word u and a position 1 ≤ i ≤ ∣u∣ in it, we denote by
u⃗i the (k + 1)-character subword of u�k that starts at position i and ends
at position i + k. The output of a k-lookahead transducer S on an input
u of length n is the unique word v = v1v2 . . . vnvn+1 for which there exists a
sequence of states q0, ..., qn satisfying δ(qi, u⃗i) = (vi, qi+1), for all 1 ≤ i ≤ n,
and Ω(qn) = vn+1. Clearly, a 0-lookahead transducer is simply a standard
(real-time sub-sequential) transducer.

3. Problem setting

Given two words u ∈ Σ∗ and v ∈ ∆∗, we denote by

dist(u, v)

the Levenshtein distance (henceforth, edit distance) between u and v, which
is defined as the length of a shortest sequence s of edit operations (e.g.,
deleting a single character, modifying a single character, and inserting a
single character) that transforms u into v [4].

We are interested in quantifying how difficult it is to edit a word in one
language to obtain a word in another language. That is, we have finite
alphabets Σ and ∆ and regular languages R ⊆ Σ∗ and T ⊆ ∆∗, called the
restriction and target languages, respectively. We would like to edit any
string that is known to belong to the restriction language R into a string in
the target language T . We will also consider the special case where R = Σ∗,
which we denote as the unrestricted case.

A repair strategy for two languages R and T is any function from R to
T . For a repair strategy f and a word u ∈ R, we define the (absolute) cost of
f on u, denoted cost(u, f), as the edit distance between u and f(u). In [1]
we have given a characterization of those pairs (R,T ) of languages for which
there exist a repair strategy f whose (absolute) cost is finite and uniformly
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bounded. In this paper we will not be concerned with the absolute cost of
repairing a word, since the worst case of this is often infinite. We consider
instead a notion of repair cost between words that looks at the percentage
of symbols in a word that need to be edited. More precisely, given a repair
strategy f for R and T and given a word u ∈ R, we define the normalized
cost of f on u as the ratio between the cost of f on u and the length of u:

ncost(u, f) =def cost(u, f)
∣u∣ .

In order to measure the asymptotic behavior of the normalized cost, we define
the asymptotic cost of f as the limit superior of the normalized cost when
the length of words in the restriction language tends to infinity:

acost(R,f) =def lim
n→∞

sup
u∈R
∣u∣≥n

ncost(u, f).

Accordingly, we define the asymptotic repair cost acost(R,T ) for two lan-
guages R and T as the minimum of acost(R,f) taken over all repair strategies
f for R and T . Note that acost(R,T ) can be equally defined by

acost(R,T ) = lim
n→∞

sup
u∈R
∣u∣≥n

min
v∈T

dist(u, v)
∣u∣ .

Example 2 (continued). Consider again the languages R = (a + b)∗ and
T = (ab)∗ of Example 2 in the introduction. Recall that, in the worst case
(i.e., a2n), one needs to edit approximately half of the letters in order to
produce a string in T . This shows that acost(R,T ) = 1

2 .

Remark 1. It is easy to see that the asymptotic repair cost acost(R,T ) of
any pair of languages ranges over the interval [0,1] of the real numbers.
Indeed, for large words in the restriction language R, one can modify and
delete the letters to create shorter words in the target language T , and thus
the resulting editing cost is always less than the length of the input word.

Ideally, we are interested in computing the asymptotic cost acost(R,T )
for any pair of regular languages R and T , provided that this number is
rational. We will indeed show that this is the case and describe a procedure
that computes the asymptotic cost.
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Streaming vs non-streaming. We know from [4] that there is a dynamic pro-
gramming algorithm that, given a word u and a regular target language
T represented by means of a finite state automaton T , computes in time
O(∣u∣ ⋅ ∣T ∣) an optimal edit sequence that transforms u into some word in T .
In particular, this shows that optimal repair strategies can be described by
functions of fairly low complexity.

Sometimes it is desirable to have repair strategies that are in even more
limited classes. Perhaps the ideal case is when we can repair R into T with a
one-pass algorithm, that is, using a real-time sub-sequential transducer. Re-
call that a real-time sub-sequential transducer defines a word-to-word func-
tion; if this function happens to produce a word in T for every input u ∈ R,
then we say that it is a streaming repair strategy for R and T . Similarly, we
can consider k-lookahead transducers, with k ∈ N: this type of transducer
outputs words on the basis of its current state and an input (k+1)-character
window that represents a substring of u of the form u[i] . . . u[i + k], where
u[i] is either the i-th symbol of w, if i ≤ ∣u∣, or a dummy symbol �, if i > ∣u∣.
Accordingly, we talk about a k-lookahead streaming repair strategy for R and
T .

Given a k-lookahead streaming edit strategy S for R and T and given a
word u ∈ R, we can define the (absolute) cost of S on u in two ways:

1. letting q0
a1/v1ÐÐ→ q1

a2/v2ÐÐ→ . . . an/vnÐÐ→ qn
vn+1ÐÐ→ be the run of S on u,

we define the aggregate cost of S on u, denoted costaggrS (u), to be the
length of the final output vn+1 plus the sum, over all indices 1 ≤ i ≤ n,
of dist(ai, vi), where dist(ai, vi) is 1 if vi is empty, ∣vi∣ − 1 if ai occurs in
vi, and ∣vi∣ otherwise;

2. considering the transducer S as a repair strategy, we define the edit cost
of S on u, denoted costeditS (u), to be simply the edit distance between
u and the output S(u).

The first notion of cost considers the distortions performed in producing
the input from the output – it is equivalent to considering the transducer
as producing edit sequences rather than strings and counting the number of
edits produced. The second notion of cost is global and it considers only
the output and not its production (clearly, the edit cost never exceeds the
aggregate cost). These two models of cost can be very different in general.
As an example, consider a transducer S on the input alphabet Σ = {a, b} that
swaps a’s and b’s. On the string un = (ab)n, the aggregate cost is 2n since S
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changes each letter, but the edit distance between u and S(u) (i.e., the edit
cost of S on u in our sense) is only 2.

In the streaming setting, we will mainly focus on the model of aggregate
cost, as for the model of edit cost we do not have any interesting result. For-
mally, we define the asymptotic (normalized aggregate) cost of a k-lookahead
streaming strategy S for R and T , as

acostaggrS (R,T ) =def lim
n→∞

sup
u∈R
∣u∣≥n

costaggrS (u)
∣u∣

where costaggrS (u) is defined above. Similarly, we define the asymptotic k-
lookahead streaming cost of R and T , denoted acostaggrk−lookahead(R,T ), as the
infimum of acostaggrS (R,T ) taken over all k-lookahead streaming repair strate-
gies S for R and T .

We remark that, a priori, the infimum in the previous definition cannot
be replaced by a minimum: it is conceivable that the asymptotic aggregate
costs of the k-lookahead streaming repair strategies for R and T are arbitrary
close to acostaggrk−lookahead(R,T ), but never achieve this value. In fact, in Section
5 we will show that this is not the case, as we can enforce, without loss of
generality, a uniform bound to the memory of the k-lookahead streaming
repair strategies.

Example 2 (continued). Consider again the languages R = (a + b)∗ and
T = (ab)∗ of Example 2 and recall that acost(R,T ) = 1

2 . We show that
the asymptotic 0-lookahead streaming aggregate cost acostaggr0−lookahead(R,T ) is
higher than the asymptotic cost in the nonstreaming case. Suppose that S
is a 0-lookahead streaming repair strategy for R and T . One can inductively
construct arbitrarily long words un = a1 a2 . . . an ∈ R such that if

q0
a1/v1ÐÐ→ q1

a2/v2ÐÐ→ . . . an/vnÐÐ→ qn

is a partial run of S on un, then each next letter an is equal to the last letter
of the prefix v1 v2 . . . vn−1 of the output of S (if v1v2 . . . vn−1 is empty, then an
can be chosen arbitrarily). It is easy to see that the aggregate cost induced by
the run of S on un is at least n−1, whence acostaggr0−lookahead(R,T ) = 1. However,
if we consider the model of edit cost, then we have acostedit0−lookahead(R,T ) = 1

2

(in fact, any streaming strategy for R and T achieves this asymptotic edit
cost).
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Observe that, in general, the k-lookahead streaming asymptotic cost
acostaggrk−lookahead(R,T ) associated with two languages R and T is a non-
increasing function of the lookahead parameter k ∈ N and it is bounded
from below by the non-streaming asymptotic cost acost(R,T ).

Towards the end of Section 5 we will consider the problem of computing
the limit of the streaming asymptotic cost acostaggrk−lookahead(R,T ) as the looka-
head parameter k gets bigger. We are not able to compute the exact value
of this limit, nor to prove that acostaggrk−lookahead(R,T ) stabilizes for sufficiently
large k, as it seems reasonable. However, we will show how to solve a simpler
problem, that consists of deciding given two DFA R and T and a rational
threshold ν whether there is k ∈ N such that acostaggrk−lookahead(R,T ) < ν.

4. Asymptotic cost in the non-streaming case

In this section, we study the problem of computing the asymptotic cost
in the non-streaming setting. We begin with some background on distance
automata, which will play a key role in the main characterization result.

4.1. Distance automata computing the edit cost

Intuitively, a distance automaton [2] is a transducer D that receives as
input a finite word u and outputs a corresponding cost D(u) in N ∪ {∞}.
Distance automata can be equivalently defined using two different presenta-
tions based, respectively, on matrices of transition costs and on transition
relations. Here, we adopt the latter type of presentation, which is more con-
venient for our purposes (e.g., it eases the definition of a run of a distance
automaton).

Formally, a distance automaton is a tuple D = (Σ,Q,E, I,F ), where Q is
a finite set of states, E ⊆ Q ×Σ ×N ×Q is a finite transition relation, I and
F are some initial and final conditions described by partial functions from Q
to N and representing the costs of beginning and ending a run with certain
states. A run of D on a word u ∈ Σ∗ is a sequence

γ = (q0, a1, c1, q1) (q1, a2, c2, q2) . . . (qn−1, an, cn, qn)

of pairwise adjacent transitions in E that spell the input word u = a1a2 . . . an.
The cost of the run γ is naturally defined by

cost(γ) =def ∑1≤i≤n ci.
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We denote by D(u) the minimum value I(q0) + cost(γ) + F (qn) among all
states q0 in the domain dom(I) of I, all states qn in the domain dom(F ) of
F , and all runs γ of D on u that start in q0 and end in qn. We let D(u) = ∞
if there are no such states q0 and qn, or if there is no run from q0 to qn.

When considering the edit distance of a word u ∈ Σ∗ to a regular language
T ⊆ ∆∗, it is fairly natural to express this value in terms of the cost computed
by a distance automaton. By default, we assume that the target language
T is recognized by an NFA T = (∆,Q,E, I,F ). Given two states p, q of T ,
we let Tp,q be the NFA obtained from T by letting p be the new initial state
and q the new unique final state. The distance automaton that computes
the edit distance of a word u ∈ Σ∗ to the target language L (T ) is defined as
Dedit
T = (Σ,Q,Eedit, Iedit, F edit), where

� Eedit is the set of all transitions of the form (p, a, c, q), with p, q ∈ Q,
a ∈ Σ, q reachable from p in T , and c = min{dist(a, v) ∶ v ∈ L (Tp,q)},

� Iedit is the partial function that maps a state q ∈ Q to the minimum
among the values dist(ε, v), with v ∈ ⋃p∈I L (Tp,q) (if q is not reachable
from some initial state of T , then Iedit(q) is undefined),

� F edit is the partial function that maps a state p ∈ Q to the minimum
among the values dist(ε, v), with v ∈ ⋃q∈F L (Tp,q) (if p cannot reach a
final state of T , then F edit(p) is undefined).

One can easily show that Dedit
T computes exactly the edit distance of a word

u ∈ Σ∗ to the regular language L (T ):

Proposition 1. For every word u ∈ Σ∗, we have

Dedit
T (u) = min

v∈L (T )
dist(u, v).

Proof. Let T = (∆,Q,E, I,F ) be an NFA and let Dedit
T =

(Σ,Q,Eedit, Iedit, F edit) be the corresponding distance automaton, as
defined above. For this proof, it is convenient to introduce the notion of
locally optimal run. We say that a run γ = (q1, a1, c1, q2) . . . (qn, an, cn, qn+1)
of Dedit

T is locally optimal if it has the minimum cost among all runs of
Dedit
T on the same word u = a1 . . . an that start in q1 and end in qn+1. Note

that there can exist several locally optimal runs on the same word u with
different costs (and, of course, with different beginning and ending states).
We have the following characterization of the minimum cost:
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Claim 1. For every word u ∈ Σ∗ and every locally optimal run γ of Dedit
T on

u that starts in p and ends in q, we have that

cost(γ) = min
v∈L (Tp,q)

dist(u, v).

Proof. The proof of the above claim is by induction on the length of the word
u. If u = ε, then the claim follows easily. As for the inductive step, let us
assume that the claim holds for u and let us prove it for u a, with a ∈ Σ.
Let γ be a locally optimal run of Dedit

T on u a that starts in p and ends in q.
Moreover, for every state r ∈ Q, let γr be a locally optimal run of Dedit

T on u
from p to r. Since γ is locally optimal, we have that its cost is the minimum
among the cost of a run γr, with r ∈ Q, plus the cost of an a-labeled transition
from r to q. From the inductive hypothesis, we have that

cost(γr) = min
v∈L (Tp,r)

dist(u, v).

This shows that

cost(γ) = min
(r,a,c,q)∈Eedit

cost(γr) + c

= min
(r,a,c,q)∈Eedit

min
v∈L (Tp,r)

dist(u, v) + c.

We now look at the definition of the transition relation Eedit. It contains
all quadruples (r, a, c, q) such that c = min{dist(a,w) ∶ w ∈ L (Tr,q)}. This
shows that

cost(γ) = min
r∈Q

min
v∈L (Tp,r)

min
w∈L (Tr,q)

dist(u, v) + dist(a,w)

= min
v w ∈L (Tp,q)

dist(u a, v w).

To complete the proof of the proposition, it is sufficient to recall that
for every word u ∈ Σ∗, Dedit

T (u) is the minimum among the values cost(γ) +
Iedit(p) + F edit(q), for all states p ∈ dom(Iedit) and q ∈ dom(F edit) and all
(locally optimal) runs γ of Dedit on u that start from p and end in q. We
also recall that Iedit(p) = min{dist(ε, v) ∶ p′ ∈ I, v ∈ L (Tp′,p)} and F edit(q) =
min{dist(ε, v) ∶ q′ ∈ F, v ∈ L (Tq,q′)}. This implies that Dedit

T (u) is the
minimum among the values

dist(ε, vI) + dist(u, v) + dist(ε, vF ) = dist(u, vI v vF ),
where vI ∈ ⋃p′∈I L (Tp′,p), v ∈ L (Tp,q), vF ∈ ⋃q′∈F L (Tq,q′), (hence vI v vF ∈
L (T )), and p, q ∈ Q. This concludes the proof of the proposition.
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4.2. Shortcut property and determinizable components

Distance automata of the form Dedit
T are a proper sub-class of all distance

automata. In particular, they satisfy the shortcut property, formalized just
below. Given a symbol a ∈ Σ and two states p, q of a distance automaton
D, we write p aÐÐ→ q to denote the existence in D of a transition (p, a, c, q)
with some cost c ∈ N.

Definition 1. A distance automaton D satisfies the shortcut property if for
all symbols a, b and all states p, q, r, p aÐÐ→ q bÐÐ→ r implies p aÐÐ→ r and
p bÐÐ→ r.

Lemma 1. For every DFA T , Dedit
T satisfies the shortcut property.

Proof. The proof follows almost immediately from the definition of Dedit
T . Let

us consider two consecutive transitions (p, a, c, q) and (q, b, c′, r) in Dedit
T . We

know from the definition of the transition relation of Dedit
T that there exist

some words v ∈ L (Tp,q) and w ∈ L (Tq,r). It follows that v w ∈ L (Tp,r).
Again from the definition of Dedit

T , we derive the existence of a transition
(p, a, c′′, r), for some c′′ ≤ dist(a, v w). Similarly, it follows that (p, b, c′′′, r) is
a transition in Dedit

T , for some c′′′ ≤ dist(b, v w).

As with NFA, we call a strongly connected component (SCC) of a distance
automaton D any maximal set of mutually reachable states. Given a SCC C
of D, we denote by D∣C the sub-automaton obtained from D by restricting
the set of states and transitions to C and by letting the initial and final
conditions map any state of C to 0. Note that the transition graph of D∣C
is a clique when D satisfies the shortcut property.

A crucial property entailed by the shortcut property is the following one.
Consider two runs γ and γ′ of D∣C that spell the same word u, but end in
different states q and q′. If γ and γ′ have optimal cost among all runs on D∣C
on u that end in q and q′ respectively, then one can show that the difference
in cost between γ and γ′ is uniformly bounded by a constant. This implies
that we can determinize D∣C by using a subset construction, maintaining the
difference between the optimal cost of reaching each state q and the overall
optimal cost (the same idea underlies Mohri’s determinization procedure [3]).
Since this difference is always uniformly bounded by a constant, we obtain a
finite state deterministic distance automaton:
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Proposition 2. For every distance automaton D that satisfies the shortcut
property and every SCC C of D, there is a deterministic distance automaton
det(D∣C) that is equivalent to D∣C, namely, such that, for all words u,

det(D∣C)(u) = D∣C(u).

In addition, one can construct det(D∣C) so as to satisfy the following prop-
erty: if u1 = uk1 and u2 = uk2 are two repetitions of the same word and ρ1 and
ρ2 are runs of det(D∣C) on u1 and u2, respectively, that form cycles, then

cost(ρ1)
k1

= cost(ρ2)
k2

.

Proof. Let D = (Σ,Q,E, I,F ) be a distance automaton satisfying the short-
cut property and let C be a SCC of it. As a preliminary remark, we observe
that, by definition, D∣C = (Σ,C,E′, I ′, F ′), where E′ is obtained from E by
restricting the set of states to C and I ′(q) = F ′(q) = 0 for all q ∈ C. Below, we
consider runs of the distance automaton D∣C on a given word u that end in
a given state q and have the minimum cost among all runs of the same type.
We call these runs (u, q)-optimal (note that these are similar to the locally
optimal runs used in the proof of Proposition 1, with the only exception that
the starting state is not fixed). We also say that a run is u-optimal if it is
(u, q)-optimal for some state q ∈ C.

The basic idea underlying the determinization of the sub-automaton D∣C
stems from the following property:

Claim 2. Given a word u ∈ Σ∗, the costs of any two u-optimal runs of D∣C
differ for at most cmax, where cmax is the maximum cost that appears in the
transitions of D∣C.

Proof. Let us fix a word u = a1 . . . an and let us consider two u-optimal runs
γ = (q1, a1, c1, q2) . . . (qn, an, cn, qn+1) and γ′ = (q′1, a1, c′1, q

′
2) . . . (q′n, an, c′n, q′n+1)

of D∣C on it. Observe that the states qn+1 and q′n+1 belong to the same SCC
C of D and, in particular, qn+1 is reachable from q′n+1, namely,

q′n+1
vÐÐ→ qn+1

where vÐÐ→ denotes the natural extension of the transition relation aÐÐ→ from
symbols to words (i.e., p vÐÐ→ q iff v = ε and p = q, or v = v′ ⋅ a, p v′ÐÐ→ r,
r aÐÐ→ q, for some v′ ∈ Σ∗ and some r ∈ C). Using a basic induction on
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∣v∣ and the shortcut property, one can prove that D contains a transition of
the form (q′n, an, c′′, qn+1), for some c′′ ∈ {0, . . . , cmax}. This implies that the
following is also a valid run of D∣C on u:

γ′′ = (q′1, a1, c
′
1, q

′
2) (q′2, a2, c

′
2, q

′
3) . . . (q′n−1, an−1, c

′
1, q

′
n) (q′n, an, c′′, qn+1)

Using the u-optimality of γ, we derive

cost(γ) ≤ cost(γ′′) ≤ cost(γ′) + cmax.

By symmetric arguments, one derives the inequality cost(γ′) ≤ cost(γ) +
cmax.

We now construct a deterministic distance automaton det(D∣C) that
turns out to be equivalent to D∣C. Intuitively, det(D∣C) parses an input
word u and it outputs the minimal cost of a u-optimal run, keeping track,
at the same time, of the differences between this cost and the costs of the
(u, q)-optimal runs, for any q ∈ C (these differences are called residual costs
and, in view of the previous claim, are uniformly bounded). We formally
define the deterministic distance automaton det(D∣C) equivalent to D∣C as
the tuple (Σ,Q′, δ, r̄0, F ′), where

� Q′ is the set of vectors with entries indexed by states in C and values
ranging over the finite set {0, . . . , cmax}, where cmax is the maximum
cost that appears in the transitions of D∣C (intuitively, these vectors
represent the residual costs of (u, q)-locally optimal runs, for each state
q ∈ C and for some fixed word u);

� δ is the partial function from Q′×Σ to N×Q′ defined by δ(r̄, a) = (c, r̄′),
where c = min{r̄[p]+c′ ∶ p ∈ C, (p, a, c′, q) ∈ E} and r̄′[q] = min{r̄[p]+
c′ − c ∶ p ∈ C, (p, a, c′, q) ∈ E};

� r̄0 is the initial vector defined by r̄0[q] = 0 for all q ∈ C;

� F ′ is the constant function that maps any vector r̄ ∈ Q′ to 0 (note that
there always exist q ∈ C for which the corresponding residual r̄[q] in r̄
is 0).

We show that det(D∣C) is equivalent to D∣C, namely, that det(D∣C)(u) =
D∣C(u) for all u ∈ Σ∗. Let us consider a word u = a1 . . . an. By exploiting a
simple induction on the length of u, one can prove that

14



1. there exists a run of det(D∣C) on u if, and only if, there exists a run of
D∣C on u, -

2. if ρ = (r̄1, a1, c1, r̄2) . . . (r̄n, an, cn, r̄n+1) is the unique run of det(D∣C)
on u = a1 . . . an starting from state r̄1 (recall that det(D∣C) is deter-
ministic), then the cost of ρ is equal to the cost of a u-optimal run
γ augmented with the residual r̄1[p], where p is the initial state of γ.
That is:

cost(ρ) = cost(γ) + r̄1[p]. (1)

We omit the formal proof of the above properties and we observe that they
immediately imply that det(D∣C)(u) = D∣C(u) for all words u ∈ Σ∗.

Towards a conclusion, we can use equation (1) to prove the additional
property concerning the cycles in det(D∣C). Consider two repetitions of the
same word, that is, u1 = uk1 and u2 = uk2 and suppose that ρ1 and ρ2 are
runs of det(D∣C) on u1 and u2 that form cycles (note that the two runs do
not need to start from the same state). We denote by cmax be the maximal
cost in D∣C and, for every n ∈ N, we let γ(n) be a un-optimal run of D∣C. We
now consider the costs of suitable repetitions of the cycles ρ1 and ρ2:

k2 ⋅ n ⋅ cost(ρ1) = cost(ρk2⋅n1 ) ≤ cost(γ(k1⋅k2⋅n)) + cmax (by (1))

≤ cost(ρk1⋅n2 ) + 2 ⋅ cmax (by (1))

≤ k1 ⋅ n ⋅ cost(ρ2) + 2 ⋅ cmax.

As the above inequality holds for all natural numbers n, we conclude that
cost(ρ1)
k1

≤ cost(ρ2)
k2

. Finally, a symmetric argument shows that cost(ρ1)
k1

≥ cost(ρ2)
k2

.

Hereafter, given a distance automaton D satisfying the shortcut property
and a SCC C in it, we denote by det(D∣C) the deterministic distance au-
tomaton that satisfies Proposition 2. A close inspection to the proof of the
above proposition shows that det(D∣C) can be constructed in exponential
time from D and C.

Example 4. Consider the distance automaton D of Figure 1, which computes
the edit distance of any word to the target language T = (ab + b)∗ a∗. As
D satisfies the shortcut property and consists of two SCCs C1 and C2, the
two sub-automata D∣C1 and D∣C2 can be turned into equivalent deterministic
distance automata det(D∣C1) and det(D∣C2), depicted to the right of Figure 1.
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D :
a/0, b/1

a/1, b/0

a/1

b/0 a/1

b/1

a/0, b/1 a/1, b/1

a/0 b/1

C1

C2

0 | 0 1 | 0

0 | 1 1 | 1

det(D|C1) :

0det(D|C2) :

a/0

a/1

b/0 b/0 a/
0

b/0

a/1

b/1

a/0, b/1

Figure 1: A distance automaton with two SCCs and its determinized sub-automata.

We remark that the above result does not imply that the entire distance
automaton D is determinizable. Consider, for instance, a distance automaton
D that computes the edit distance of a word u to the target language T = a∗+
b∗. This distance is given by the minimum between the number of occurrences
of a and the number of occurrences of b and hence any deterministic device
that computes dist(u,L (T )) must use unbounded memory.

4.3. Asymptotic cost in the unrestricted case

We now look at a special case of the asymptotic cost problem, where the
source restriction is trivial. Thanks to Proposition 1 and Lemma 1, we can
reduce the problem of computing the asymptotic repair cost acost(Σ∗,L (T ))
in the unrestricted case to the problem of computing the asymptotic cost of
a distance automaton D satisfying the shortcut property:

acost(D) =def lim
n→∞

sup
u∈Σ∗

∣u∣≥n

D(u)
∣u∣ .

This section is devoted to provide an effective characterization of the asymp-
totic cost acost(D) that will imply that the value is rational and computable
from D.

Before turning to the characterization, we prove that, in general, it is not
possible to compute the asymptotic cost acost(D) for an arbitrary distance
automaton D:

Proposition 3. The problem of deciding, given an arbitrary distance au-
tomaton D, whether or not acost(D) ≤ 1

2 is undecidable.
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Proof. We use the undecidability of the 1
2-threshold problem for normalized

costs induced by distance automata [5], which consists of deciding, given a

distance automaton D, whether D(u)
∣u∣ ≤ 1

2 holds for all words u ∈ Σ∗.

Let us consider a distance automaton D = (Σ,Q,E, I,F ). We compute
a variant of the Kleene closure of D, denoted D∗#, by introducing a fresh
symbol # /∈ Σ and by adding 0-cost #-labeled transitions from all states
p ∈ dom(F ) to all states q ∈ dom(I). The new automaton D∗# satisfies the
following property:

∀m ∈ N, u1, . . . , um ∈ Σ∗. D∗#(u1# . . .#um) = ∑1≤i≤mD(ui).

Clearly, this implies that acost(D∗#) ≥ sup
u∈Σ∗

D(u)
∣u∣ . As for the converse in-

equality, we consider a family of words u(n) = u(n)
1 # . . .#u

(n)
mn of length n such

that lim
n→∞

D∗#(u(n))
n

= acost(D∗#) and we observe that

D∗#(u(n))
n

= ∑1≤i≤mn
D(u(n)

i )
∑1≤i≤mn

∣u(n)
i ∣ +mn − 1

≤ sup
u∈Σ∗

D(u)
∣u∣ .

In particular, the above inequalities imply that acost(D∗#) = sup
u∈Σ∗

D(u)
∣u∣ and

hence they reduce the 1
2 -threshold problem for D to the problem of deciding

whether acost(D∗#) ≤ 1
2 . From previous remarks about the undecidability of

the 1
2 -threshold problem, it follows that it is not possible to compute the

asymptotic cost for generic distance automata.

The above proof gives a reduction from the 1
2 -threshold problem for the

normalized cost of a distance automaton D to the 1
2 -threshold problem for

the asymptotic normalized cost of a distance automaton D∗#. It is worth
remarking that this reduction does not preserve the shortcut property. This
means that, even though it is possible to compute the asymptotic normalized
cost for the sub-class of distance automata satisfying the shortcut property,
the decidability of the analogous 1

2 -threshold problem for the normalized
cost cannot be immediately derived from that. The problem of computing
the normalized cost for a distance automaton satisfying the shortcut property
remains, to our knowledge, open.

An approximate variant of the threshold problem for distance automata
was solved in [6] by an algorithm that, given any rational number ε > 0, tells
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apart the case D(u)
∣u∣ ≤ (1 − ε) ⋅ 1

2 from the case D(u)
∣u∣ ≥ 1

2 (in the reaming cases

the algorithm may return any output).

Next we explain how the shortcut property helps in computing the asymp-
totic cost. One can show that the problem of computing acost(D) for a
distance automaton D that is deterministic is reducible to the problem of
computing normalized costs of simple cycles. Formally, a simple cycle is a
run that is a cycle (i.e., that starts and ends in the same state) but that does
not contain proper sub-cycles. It is then easy to show that for a determin-
istic distance automaton D, acost(D) coincides with the maximum of cost(L)

∣L∣
among all simple cycles L of D, where cost(L) denotes the cost of the simple
cycle L and ∣L∣ its length (i.e., number of transitions in it). Thus by Propo-
sition 2, calculation with simple cycles suffices to compute the asymptotic
cost of any distance automaton satisfying the shortcut property and having
a single SCC.

We consider now the more general case of a distance automaton D sat-
isfying the shortcut property and having many SCCs, say C1, . . . ,Ck. The
situation in this case is slightly more complicated, as acost(D) cannot be ex-
pressed as a function of acost(D∣C1), . . . , acost(D∣Ck). For this we define D̄ as
the deterministic multi-distance automaton obtained from the synchronous
product of det(D∣C1), . . ., det(D∣Ck) and we denote by L1, . . . , Lm the simple
cycles of D̄. Moreover, given 1 ≤ i ≤m and 1 ≤ j ≤ k, we denote by costj(Li)
the cost of the projection of the simple cycle Li into the j-th component of
D̄. Assuming that D is trimmed, namely, all its states are reachable from
some states in dom(I) and they can reach some states in dom(F ), we can
characterize the asymptotic cost of D as follows:

Theorem 1. For every (trimmed) distance automaton D satisfying the short-
cut property,

acost(D) = max
α1,...,αm≥0

min
1≤j≤k

∑1≤i≤mαi ⋅ costj(Li)
∑1≤i≤mαi ⋅ ∣Li∣

(2)

where C1, . . . ,Ck are the SCCs of the distance automaton D, L1, . . . , Lm are
the simple cycles of the multi-distance automaton D̄ = det(D∣C1) × . . . ×
det(D∣Ck), and costj(Li) is the cost of the projection of the simple cycle
Li into the j-th component of D̄.

The idea underlying the above characterization is that the asymptotic
cost acost(D) is achieved by repetitions of simple cycles in the multi-distance
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automaton D̄. The parameters α1, . . . , αm represent a correlation between the
numbers of repetitions of the various simple cycles and the index j represents
the SCC of D that optimizes the normalized cost of these repetitions. Before
turning to the proof of this characterization, we illustrate by means of an
example the rationale behind the use of cycles in D̄.

Example 5. Consider again the distance automaton D of Figure 1, with
the two SCCs C1 and C2. The determinized sub-automaton det(D∣C1) has
four different simple cycles: one spelling aa with cost 1, one spelling ab with
cost 0, one spelling b with cost 0, and one spelling aab with cost 1. Simi-
larly, the determinized sub-automaton det(D∣C2) has two simple cycles: one
spelling a with cost 0, and the other spelling b with cost 1. Hence (aa)n is
a family of words achieving a worst-case asymptotic cost of lim n

2n = 1
2 for

the sub-automaton D∣C1, and bn is a family of words achieving a worst-case
asymptotic cost of lim n

n = 1 for the sub-automaton D∣C2. However, a2n is
not a worst-case for D∣C2 (as it can be repaired with asymptotic cost 0) and,
symmetrically, bn is not a worst-case for D∣C1. This means that the asymp-
totic cost for D must be achieved by a suitable combination of both families
of words. To find the correct combination that witnesses the asymptotic cost
for D it is convenient to consider cycles in the multi-distance automaton
D̄ = det(D∣C1) × detdet(D∣C2) and linear combinations of their costs in the
components C1 and C2. For the considered example, we notice that the sim-
ple cycle in D̄ that spells repetitions of the form (aab)n achieves maximal
normalized cost in both components, that is, 1

3 , which indeed coincides with
the worst-case asymptotic cost acost(D).

The proof of Theorem 1 consists of establishing two inequalities, which
are given by Lemma 3 and Lemma 4 below.

For the first inequality, we argue that all words can be approximated in
cost by repetitions of simple cycles, and that the cost of parsing these words
is at most the cost of a “homogeneous run”, i.e., a run lying entirely inside
a single component of D. The first part of the proof relies on the following
property, which is also present in [7]. We state it in a graph-theoretic setting,
in such a way that it can be later reused in several proofs. In particular, we
consider a directed graph G, which can be understood as the multi-distance
automaton D̄, and a path ρ in it, that is, a sequence of edges of the form
e1 e2 . . . en, where the target vertex of each edge ei coincides with source
vertex of the next edge ei+1. Intuitively, this property state in the following
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lemma eases the calculation of the cost within a SCC Cj of a run ρ of D̄ that
does not show any particular ‘cyclic’ structure.

Lemma 2 (Simple cycle decomposition [7]). Let G be a finite graph and let
L1, . . . , Lm be all the simple cycles in it. Given a path ρ in G, one can find a
partition the domain of ρ into (possibly non-convex) subsets X0,X1, . . . ,Xm

such that

1. ∣X0∣ ≤K, where K is the number of vertices of G,

2. for all 1 ≤ i ≤m, the sub-sequence ρ∣Xi is a repetition of Li.

Proof. We find the sets X0,X1, . . . ,Xm by exploiting an induction. At the
beginning we define X0,0 to be the entire domain of the path ρ and X0,i = ∅
for all 1 ≤ i ≤ m. At each induction step on n ∈ N, we subtract a suitable
convex subset Yn from Xn,0 and we add it to one of the subsets Xn,i, with
1 ≤ i ≤m. More precisely, if ∣Xn,0∣ ≤K, where K is the number of vertices of
G, then we terminate the induction with the current sets Xn,0,Xn,1, . . . ,Xn,m.
Otherwise, we continue the induction by specifying the sets Xn+1,0, Xn+1,1,
. . ., Xn+1,m in terms of Xn,0, Xn,1, . . ., Xn,m as follows. We first claim that
there is an interval Yn contained in Xn,0 for which the sub-sequence ρ∣Yn is an
occurrence of a simple cycle Li, for some 1 ≤ i ≤m. Indeed, since the length
of the sub-sequence ρ∣Xn,0 exceeds the number K of states of G, we know
that ρ∣Xn,0 contains two repeated occurrences of the same state, and hence a
cycle L. In its turn, the cycle L must contain an occurrence of a simple cycle
among L1, . . . , Lm (this follows from the fact that the containment relation
between cycles is a well-founded partial order). We choose such an occurrence
of the simple cycle Li in ρ∣Xn,0 and we denote by Yn the set of the positions
in Xn,0 that carry the chosen occurrence. Accordingly, we define

� Xn+1,0 =Xn,0 ∖ Yn,

� Xn+1,i =Xn,i ∪ Yn,

� Xn+1,i′ =Xn,i′ for all indices 1 ≤ i′ ≤m different from i.

If n is the last step of the induction, then we define Xi =Xn,i for all 0 ≤ i ≤m.
Note that we have ∣X0∣ = ∣Xn,0∣ ≤ K. Moreover, it is easy to verify (e.g., by
induction on n) that each sub-sequence ρ∣Xn,i (and hence, in particular, the
sub-sequence ρ∣Xi) is a repetition of the corresponding simple cycle Li. This
concludes the proof of the claim.
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Hereafter, for the sake of brevity, we tacitly assume that C1, . . . ,Ck are
the SCCs of the distance automaton D and L1, . . . , Lm are the simple cycles of
the multi-distance automaton D̄ = det(D∣C1)× . . .×det(D∣Ck). Moreover, we
say that a run γ = (q0, a1, c1, q1) . . . (qn−1, an, cn, qn) of D = (Σ,Q,E, I,F ) is
successful if it starts in a state q0 ∈ dom(I) and it ends in a state qn ∈ dom(F ).

Lemma 3. For every distance automaton D satisfying the shortcut property,

acost(D) ≤ max
α1,...,αm≥0

min
1≤j≤k

∑1≤i≤mαi ⋅ costj(Li)
∑1≤i≤mαi ⋅ ∣Li∣

.

Proof. Let (u(n))
n∈N be a family of words over the alphabet Σ such that

acost(D) = lim sup
n→∞

D(u(n))
∣u(n)∣ .

Without loss of generality, we can assume that the limit of the sequence
D(u(n))
∣u(n)∣ , for arbitrarily large numbers n, exists, and hence it coincides with

acost(D). Indeed, if this were not the case, we could restrict ourselves to
a proper sub-family (u(n))

n∈N of words, where N is a an infinite subset of

the natural numbers, in such a way that the sequence D(u(n))
∣u(n)∣ converges for

n ranging over N . Assuming that lim
n→∞

D(u(n))
∣u(n)∣ is defined will allow us to fur-

ther restrict, if necessary, to sub-families of words without compromising the
above equality. To prove the lemma, it is sufficient to find some parameters
α1, ..., αm ≥ 0 that satisfy the following inequality:

lim sup
n→∞

D(u(n))
∣u(n)∣ ≤ min

1≤j≤k

∑1≤i≤mαi ⋅ costj(Li)
∑1≤i≤mαi ⋅ ∣Li∣

. (3)

Let us fix n ∈ N and denote by ρ(n) the (unique) successful run of D̄ on the

word u(n), and by ρ
(n)
j the projection of it into the j-th component Cj, for

any 1 ≤ j ≤ k.
First, we compare the cost D(u(n)) with the cost D∣Cj(u(n)) for each SCC

Cj. Consider a successful run γ(n) of D on u(n) which starts in some state p
and ends in some state q and that minimizes the value cost(γ(n))+I(p)+F (q).
Clearly, we have D(u(n)) ≤ cost(γ(n))+Imax+Fmax, where Imax is the maximum
value taken by the initial condition of D and Fmax is the maximum value
taken by the final condition of D. Consider now a run γ

(n)
j of D∣Cj on
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the same word u(n), but entirely inside the SCC Cj, which starts in p′ and
ends in q′ and that minimizes the relative cost. Since the initial and final
conditions of D∣Cj map every state to 0, we have D∣Cj(u(n)) = cost(γ(n)

j ).
Moreover, since D is trimmed, we know that p′ is reachable from p and q is
reachable from q′. Thus, using the shortcut property, one can easily verify
that cost(γ(n)) ≤ cost(γ(n)

j ) + 2cmax, where cmax is the maximum cost that
appears in the transitions of D (the additive constant 2cmax accounts for the
cost discount in considering a run of D∣Cj rather than a run of D). This
shows that

D(u(n)) ≤ cost(γ(n)) + Imax + Fmax

≤ min
1≤j≤k

cost(γ(n)
j ) + 2cmax + Imax + Fmax

= min
1≤j≤k

D∣Cj(u(n)) + 2cmax + Imax + Fmax

From Proposition 2, we also know that D∣Cj(u(n)) = det(D∣Cj)(u(n)). More-
over, since det(D∣Cj) is a deterministic distance automaton, the projection

ρ
(n)
j of ρ(n) can be viewed as the unique run of det(D∣Cj) on u(n). We thus

obtain
D∣Cj(u(n)) = det(D∣Cj)(u(n)) = cost(ρ(n)j ).

Below, we explicitly compute the cost of each run ρ
(n)
j using the costs of the

simple cycles Li in the component Cj of D. The problem is that the run
ρ(n) may not contain factors consisting of entire repetitions of these simple
cycles. We overcome this problem by viewing the multi-distance automaton
D̄ as a finite graph and the run ρ(n) of D̄ as a path in it. The simple cycle
decomposition lemma (Lemma 2) implies the existence of a partition of the

domain of ρ(n) into (possibly non-convex) subsets X
(n)
0 ,X

(n)
1 , . . . ,X

(n)
m such

that

1. ∣X(n)
0 ∣ is uniformly bounded by the number K of states of D̄,

2. for all 1 ≤ i ≤m, the sub-sequence ρ(n)∣X(n)
i is a repetition of the simple

cycle Li of D̄.

For every index 1 ≤ i ≤ m, we denote by occ
(n)
i the number of repetitions

of the simple cycle Li in the sub-sequence ρ(n)∣X(n)
i (by a slight abuse of

terminology we say that these are also ‘repetitions’ in the run ρ(n)). We are
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now ready to bound the cost of ρ(n) in the component Cj in terms of the
costs of the ‘repetitions’ of each simple cycle Li in ρ(n).

The first, straightforward, inequality is as follows (recall that the sets

X
(n)
0 , X

(n)
1 , . . ., X

(n)
m form a partition of the domain of ρ(n) and ∣X(n)

0 ∣ ≤K):

cost(ρ(n)j ) = ∑1≤i≤m cost(ρ(n)j ∣X(n)
i ) + cost(ρ(n)j ∣X(n)

0 )

≤ ∑1≤i≤m cost(ρ(n)j ∣X(n)
i ) + K ⋅ c′max

where c′max is the maximum cost that appears in the transitions of D̄. More-

over, it easily follows from the fact that the sub-sequence ρ(n)∣X(n)
i is an

occ
(n)
i -fold repetition of the simple cycle Li, that

cost(ρ(n)j ∣X(n)
i ) = occ

(n)
i ⋅ costj(Li).

Now, in order to find the parameters α1, ..., αm ≥ 0 that satisfy Equation

(3), we consider the asymptotic behaviour of the sequence
occ

(n)
i

n . Without

loss of generality, we can assume that the limit of
occ

(n)
i

n for arbitrarily large
numbers n ∈ N exists. Indeed, we can always find an infinite set N of natural

numbers such that the sequence
occ

(n)
i

n converges for n ranging over N . Note
that restricting to the corresponding sub-family of words u(n) and runs γ(n)

and ρ(n), for n ∈ N , does not affect the previously established equalities (in

particular, acost(D) = lim
n→∞

cost(γ(n))
∣u(n)∣ ). For the sake of simplicity, we shall not

explicitly mention the set N hereafter and we use, for instance, limn→∞ f(n)
to denote the limit of a certain function f for arbitrarily large numbers n ∈ N .
Accordingly, for every index 1 ≤ i ≤m, we define

αi =def lim
n→∞

occ
(n)
i

n
.

Clearly, we have that

occ
(n)
i ⋅costj(Li) = (n ⋅αi+occ(n)i −n ⋅αi)⋅costj(Li) = n ⋅αi ⋅costj(Li)+gi,j(n)

where gi,j(n) =def (occ(n)i − n ⋅ αi) ⋅ costj(Li) is a function whose limit tends
to 0 (hence gi,j ∈ O(1), using the ‘big-O’ notation).

Putting all together, we get an upper bound to the cost of the run γ(n):

D(u(n)) ≤ min
1≤j≤k

D∣Cj(u(n)) + 2cmax + Imax + Fmax
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= min
1≤j≤k

cost(ρ(n)j ) + 2cmax + Imax + Fmax

≤ min
1≤j≤k

( ∑
1≤i≤m

cost(ρ(n)j ∣X(n)
i ) +K ⋅ c′max) + 2cmax + Imax + Fmax

= min
1≤j≤k

∑
1≤i≤m

(occ(n)i ⋅ costj(Li)) + 2cmax + Imax + Fmax +K ⋅ c′max

= min
1≤j≤k

∑
1≤i≤m

(n ⋅ αi ⋅ costj(Li) + gi,j(n)) + 2cmax + Imax + Fmax +K ⋅ c′max

= n ⋅ min
1≤j≤k

∑1≤i≤mαi ⋅ costj(Li) + O(1).

Similarly, we obtain a lower bound to the length of the word u(n):

∣u(n)∣ ≥ ∑1≤i≤m u
(n)∣X(n)

i

= ∑1≤i≤m occ
(n)
i ⋅ ∣Li∣

= n ⋅ ∑1≤i≤mαi ⋅ ∣Li∣ − O(1).

Towards a conclusion, we prove Equation (3) as follows:

lim sup
n→∞

D(u(n))
∣u(n)∣ ≤ lim sup

n→∞

n ⋅ min
1≤j≤k

∑1≤i≤mαi ⋅ costj(Li) + O(1)

n ⋅ ∑1≤i≤mαi ⋅ ∣Li∣ − O(1)

= min
1≤j≤k

∑1≤i≤mαi ⋅ costj(Li)
∑1≤i≤mαi ⋅ ∣Li∣

.

For the converse inequality, we present a large family of words for which
the optimal runs are nearly homogeneous (in the sense that they lie almost
entirely inside a single component of D). The words will consist of nested
repetitions of simple cycles in such a way that any optimal run stabilizes in
the same component.

Lemma 4. For every distance automaton D satisfying the shortcut property,

acost(D) ≥ max
α1,...,αm≥0

min
1≤j≤k

∑1≤i≤mαi ⋅ costj(Li)
∑1≤i≤mαi ⋅ ∣Li∣

.
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Proof. Let us fix arbitrarily some parameters α1, . . . , αm ≥ 0. We prove the
above inequality by constructing a family of ‘cyclic’ words u(n) that depend
on α1, . . . , αm and n and such that the normalized cost of any run of D on

u(n) dominates, in the limit, the cost ∑1≤i≤m αi⋅costj(Li)
∑1≤i≤m αi⋅∣Li∣ . For the moment, we

assume that all the states of the cycles L1, . . . , Lm are mutually reachable in
D̄. Towards the end of the proof, we will show how to drop this assumption.

We fix (i) a run σ0 of D̄ that starts from the initial state of D̄ and ends
in the first/last state of L1, (ii) a run σm of D̄ that starts from the first/last
state of Lm and ends in the first/last state of L1, and (iii) for all 1 ≤ i <m, a
run σi of D̄ that starts from the first/last state of Li and ends in the first/last
state of Li+1. Without loss of generality, we can assume that the lengths of
the runs σ0, σ1, . . . , σm do not exceed the number K of states of D̄. Now, we
think of each simple cycle Li as a run of the multi-distance automaton D̄
that starts and ends in the same state and we construct, for every natural
number n, a ‘cyclic’ run ρ(n) of D̄ as follows:

ρ(n) =def σ0 (ρ(n)cycles)n

where ρ
(n)
cycles =def L

⌈n⋅α1⌉
1 σ1 L

⌈n⋅α2⌉
2 . . . σm−1 L

⌈n⋅αm⌉
m σm.

Accordingly, we denote by u(n) the word spelled out by the run ρ(n).
To prove the claim of the lemma, it is sufficient to prove that the following

inequality holds for all n ∈ N and for all choices of runs γ(n) of D on u(n):

lim sup
n→∞

cost(γ(n))
∣u(n)∣ ≥ min

1≤j≤k

∑1≤i≤mαi ⋅ costj(Li)
∑1≤i≤mαi ⋅ ∣Li∣

. (4)

Let us now fix further a run γ(n) of D on u(n) for each n ∈ N. We introduce
some additional notation. Given n ∈ N, 1 ≤ i ≤m, and 1 ≤ j ≤ k, we define:

� X
(n)
j to be the set of positions of γ(n) that carry occurrences of tran-

sitions whose states belong to the same SCC Cj (note that X
(n)
j is an

interval);

� Y
(n)
j to be the maximal subset of X

(n)
j such that the sub-run ρ(n)∣Y (n)

j

is a repetition of the block ρ
(n)
cycles (note that Y

(n)
j is also an interval);

� Z
(n)
j,i to be the maximal subset of Y

(n)
j such that ρ(n)∣Z(n)

j,i is a repetition

of the simple cycle Li (note that the sets Z
(n)
j,1 , . . ., Z

(n)
j,m form a partition

of Y
(n)
j and they contain possibly non-contiguous positions).
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� occ
(n)
j to be the number of repetitions of ρ

(n)
cycles in the sub-run ρ(n)∣Y (n)

j ,

namely, occ
(n)
j = ∣Y (n)j ∣

∣ρ(n)
cycles

∣
(note that this implies ρ(n)∣Z(n)

j,i = L⌈n⋅αi⌉⋅occ(n)j

i ).

The first inequality is straightforward (the sets Z
(n)
j,i are pairwise disjoint):

cost(γ(n)) ≥ ∑
1≤j≤k

∑
1≤i≤m

cost(γ(n)∣Z(n)
j,i ).

Given an index 1 ≤ j ≤ k, we also denote by ρ
(n)
j the projection of ρ(n) into

the j-th component (we can think of it as a run of the deterministic distance
automaton det(D∣Cj) on u(n)). Below, we fix some indices 1 ≤ i ≤ m and

1 ≤ j ≤ k and we compare the cost of each sub-sequence γ(n)∣Z(n)
j,i with the

cost of the corresponding sub-run ρ
(n)
j ∣Z(n)

j,i of D∣Cj.
We observe that γ(n)∣Z(n)

j,i is not necessarily a run of D∣Cj, since the

set Z
(n)
j,i is not an interval of the domain of γ(n) (we can still compute its

cost though). We first turn γ(n)∣Z(n)
j,i into a run γ̃

(n)
j,i of D∣Cj on u(n)∣Z(n)

j,i

of similar cost, as follows. Suppose that there exist two positions x < y in
Z

(n)
j,i such that z /∈ Z(n)

j,i for all x < z < y and the corresponding transitions

γ(n)[x] = (px, ax, cx, qx) and γ(n)[y] = (py, ay, cy, qy), which are consecutive in

γ(n)∣Z(n)
j,i , do not match (i.e., qx ≠ py). We call such a pair (x, y) of positions

a gap of Z
(n)
j,i . The states qx and py belong to the same SCC Cj of D and

hence it follows from the shortcut property that D∣Cj contains a transition of
the form (px, ax, c′x, py), for some c′x ∈ N, connecting px to py. The described
operation of connecting states through shortcuts can be applied to every
gap (x, y) of Z

(n)
j,i , thus resulting in a correct run γ̃

(n)
j,i of D∣Cj on the sub-

word u(n)∣Z(n)
j,i . We observe two crucial properties about this construction.

First, the number of required operations is at most occ
(n)
j (this follows from

the fact that the gaps of Z
(n)
j,i can only appear between the positions that

correspond to two non-consecutive occurrences of L
⌈n⋅αi⌉
i in ρ(n) and from the

fact that there exist at most occ
(n)
j such occurrences). Second, the difference

in cost that results from one application of this operation never exceeds the
maximum cost cmax of the transitions in D. In view of these properties, we
have

cost(γ(n)∣Z(n)
j,i ) ≥ cost(γ̃(n)

j,i ) − cmax ⋅ occ(n)j .
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From the fact that γ̃
(n)
j,i is a correct run of D∣Cj on u(n)∣Z(n)

j,i and the initial
and final conditions of the sub-automaton D∣Cj map every state in Cj to the
cost 0, we derive

cost(γ̃(n)
j,i ) ≥ D∣Cj(u(n)∣Z(n)

j,i ).
Proposition 2 then implies that

D∣Cj(u(n)∣Z(n)
j,i ) = det(D∣Cj)(u(n)∣Z(n)

j,i ).

Now, consider the j-th projection ρ
(n)
j ∣Z(n)

j,i of the sub-run ρ(n)∣Z(n)
j,i of the de-

terministic multi-distance D̄. By construction, ρ
(n)
j ∣Z(n)

j,i is a run of det(D∣Cj)
on the sub-word u(n)∣Z(n)

j,i . Note that ρ
(n)
j ∣Z(n)

j,i can start from a state that is
different from the initial state of det(D∣Cj) and hence it is not guaranteed to

have optimal cost. However, the first state of ρ
(n)
j ∣Z(n)

j,i is reachable from the

initial state of det(D∣Cj) by a path τ
(n)
j,i of length at most K, where K is the

number of states of D̄. For the sake of brevity, we denote by x
(n)
j,i be the word

spelled out by τ
(n)
j,i and by z

(n)
j,i the sub-word u(n)∣Z(n)

j,i (which is spelled out

by ρ(n)∣Z(n)
j,i ). Clearly, we have cost(ρ(n)j ∣Z(n)

j,i ) ≤ cost(τ (n)
j,i )+ cost(ρ(n)j ∣Z(n)

j,i ) =
det(D∣Cj)(x(n)

j,i z
(n)
j,i ) = D∣Cj(x(n)

j,i z
(n)
j,i ). Let us now consider two optimal

runs α
(n)
j,i and β

(n)
j,i of D∣Cj on x

(n)
j,i and z

(n)
j,i , respectively. Clearly, we have

D∣Cj(x(n)
j,i ) = cost(α(n)

j,i ) and D∣Cj(z(n)j,i ) = cost(β(n)
j,i ). Moreover, since D∣Cj

satisfies the shortcut property, we have that the juxtaposition of the two
runs α

(n)
j,i and β

(n)
j,i of D∣Cj can be turned into a valid run λ

(n)
j,i of D∣Cj on

x
(n)
j,i z

(n)
j,i , having cost at most cost(α(n)

j,i ) + cost(β
(n)
j,i ) + cmax, where cmax is the

maximum cost of the transitions in D. This shows that D∣Cj(x(n)
j,i z

(n)
j,i ) ≤

cost(λ(n)
j,i ) ≤ cost(α(n)

j,i ) + cost(β(n)
j,i ) + cmax = D∣Cj(x(n)

j,i ) + D∣Cj(z
(n)
j,i ) + cmax ≤

K ⋅ cmax + det(D∣Cj)(z(n)j,i ) + cmax. Overall, this shows that

det(D∣Cj)(u(n)∣Z(n)
j,i ) ≥ cost(ρ(n)j ∣Z(n)

j,i ) − (K + 1) ⋅ cmax.

Now, we explicitly compute the cost of ρ
(n)
j ∣Z(n)

j,i as follows. Since ρ
(n)
j ∣Z(n)

j,i

is an (⌈n ⋅ αi⌉ ⋅ occ(n)j )-fold repetition of the simple cycle Li, we have

cost(ρ(n)j ∣Z(n)
j,i ) = ⌈n ⋅ αi⌉ ⋅ occ(n)j ⋅ costj(Li).
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Another crucial step amounts to showing that the sum of the numbers occ
(n)
j

over all indices 1 ≤ j ≤ k is almost equal (i.e., equal up to a constant) to the

total number n of repetitions of the block ρ
(n)
cycles in ρ(n). The first inequality

follows trivially by construction:

∑
1≤j≤k

occ
(n)
j ≤ n.

As for the converse equality, we recall that each set Y
(n)
j is defined as the

maximal set of positions of γ(n) that contain states from the SCC Cj and

such that the sub-run ρ(n)∣Y (n)
j is a repetition of the block ρ

(n)
cycles. This implies

that there exist at most k occurrences of the block ρ
(n)
cycles in ρ(n) that are not

entirely covered by some set Y
(n)
j , for any 1 ≤ j ≤ k. From this and from the

definition of occ
(n)
j , we derive the following inequalities:

∑
1≤j≤k

occ
(n)
j = ∑

1≤j≤k

∣Y (n)
j ∣

∣ρ(n)cycles∣
≥

∣ρ(n)∣ − k ⋅ ∣ρ(n)cycles∣
∣ρ(n)cycles∣

≥
n ⋅ ∣ρ(n)cycles∣ − k ⋅ ∣ρ

(n)
cycles∣

∣ρ(n)cycles∣
≥ n − k.

Putting together all the inequalities (and using some basic rewriting), we
obtain a lower bound to the cost of the run γ(n):

cost(γ(n)) ≥ ∑
1≤j≤k

∑
1≤i≤m

cost(γ(n)∣Z(n)
j,i )

≥ ∑
1≤j≤k

∑
1≤i≤m

cost(γ̃(n)
j,i ) − m ⋅ cmax ⋅ ∑

1≤j≤k
occ

(n)
j

≥ ∑
1≤j≤k

∑
1≤i≤m

det(D∣Cj)(u(n)∣Z(n)
j,i ) − m ⋅ cmax ⋅ ∑

1≤j≤k
occ

(n)
j

≥ ∑
1≤j≤k

∑
1≤i≤m

(cost(ρ(n)j ∣Z(n)
j,i ) − (K + 1) ⋅ cmax) − m ⋅ cmax ⋅ n

≥ ∑
1≤j≤k

∑
1≤i≤m

(⌈n ⋅ αi⌉ ⋅ occ(n)j ⋅ costj(Li)) − m ⋅ cmax ⋅ (k ⋅ (K+1) + n)

≥ ∑
1≤j≤k

(occ(n)j ⋅ n ⋅ ∑
1≤i≤m

αi ⋅ costj(Li)) − m ⋅ cmax ⋅ (k ⋅ (K+1) + n)
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≥ n ⋅ ( ∑
1≤j≤k

occ
(n)
j ) ⋅ min

1≤j≤k
∑

1≤i≤m
(αi ⋅ costj(Li)) − m ⋅ cmax ⋅ (k ⋅ (K+1) + n)

≥ n ⋅ (n − k) ⋅ min
1≤j≤k

∑
1≤i≤m

(αi ⋅ costj(Li)) − m ⋅ cmax ⋅ (k ⋅ (K+1) + n)

= n2 ⋅ min
1≤j≤k

∑
1≤i≤m

αi ⋅ costj(Li) − O(n). (*)

Similarly, we easily obtain an upper bound to the length of the word u(n):

∣u(n)∣ = n ⋅ ∑
1≤i≤m

(⌈n ⋅ αi⌉ ⋅ ∣Li∣) + ∣σ0∣ + n ⋅ ∑
1≤i≤m

∣σi∣

≤ n2 ⋅ ∑
1≤i≤m

(αi ⋅ ∣Li∣) + n ⋅ ∑
1≤i≤m

∣Li∣ +K + n ⋅m ⋅K

= n2 ⋅ ∑
1≤i≤m

αi ⋅ ∣Li∣ + O(n). (**)

Pairing the above equations will allow us to prove the claim of the lemma
in the case where all states of the cycles L1, . . . , Lm are mutually reachable in
D̄ (recall that we made such an assumption at the beginning of the proof).

Since, in general, this assumption may not hold, in order to complete the
proof of the lemma we need to show how to derive Equation (4) where some
cycles among L1, . . . , Lm cannot be reached from the others cycles.

Let v1, . . . , vm be the words spelled by the cycles L1, . . . , Lm in D̄. First
of all, notice that det(D∣C1), . . . ,det(D∣Ck) are complete automata, namely,
in these automata, every state has one outgoing transition labelled with each
letter of the alphabet. This means that D̄ is also complete. In particular, we
can find a bottom strongly-connected component of D̄ that contains a set of
mutually reachable cycles L′1, . . . , L

′
m, where each cycle L′i spells a repetition

of the word vi, say vlii for some positive number li. Now, set l = l1 ⋅ . . . ⋅ lm
and define the cycles L′′i = (L′i)

l
li . Clearly, the states of the cycles L′′1 , . . . , L

′′
m

are mutually reachable. Furthermore, we can derive both Equation (*) and
Equation (**) exactly as we did before. From these equations we easily get

lim sup
n→∞

cost(γ(n))
∣u(n)∣ ≥ lim sup

n→∞

n2 ⋅ min
1≤j≤k

∑1≤i≤mαi ⋅ costj(L′′i ) − O(n)

n2 ⋅ ∑1≤i≤mαi ⋅ ∣L′′i ∣ + O(n)
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Moreover, since each cycle L′′i spells the li-fold repetition of the word spelled
by Li, we derive from the second claim of Proposition 2 the following equality:

cost(L′′i ) = l ⋅ costj(Li).

Finally, by replacing cost(L′′i ) with l ⋅ costj(Li) in the above equation, we
derive the desired Equation (4):

lim sup
n→∞

cost(γ(n))
∣u(n)∣ ≥ lim sup

n→∞

n2 ⋅ min
1≤j≤k

∑1≤i≤mαi ⋅ l ⋅ costj(Li) − O(n)

n2 ⋅ ∑1≤i≤mαi ⋅ l ⋅ ∣Li∣ + O(n)

= min
1≤j≤k

∑1≤i≤mαi ⋅ costj(Li)
∑1≤i≤mαi ⋅ ∣Li∣

.

This completes the proof of Lemma 4.

By virtue of Lemma 3 and Lemma 4, the proof of Equation (2) from
Theorem 1 becomes trivial.

We make a few remarks related to the effectiveness of the characterization.
First of all, we observe that the right handside term of Equation (2) can be
rewritten as the following instance of a linear programming problem:

maximize y subject to ∑1≤i≤m ci,j ⋅ xi ≥ y ∀1 ≤ j ≤ k
∑1≤i≤m xi ≤ 1, xi ≥ 0 ∀1 ≤ i ≤m.

where, for every 1 ≤ i ≤ m and every 1 ≤ j ≤ k, ci,j = costj(Li)
∣Li∣ . Intuitively, the

variables x1, . . . , xm represent the values α1 ⋅ ∣L1∣, . . ., αm ⋅ ∣Lm∣ normalized in
such a way that they sum up to 1, and the variable y represents an under-
approximation of the value of the right handside term of the equation. It
is also known [8] that the optimal choices for the parameters x1, . . . , xm, y
can be found at the ‘corners’ of the (m + 1)-dimensional polyhedron that
results from the intersection of the finitely many half-spaces defined by the
above linear inequalities. This explains why we put maxα1,...,αm≥0 instead of
supα1,...,αm≥0 in Equation (2). Moreover, it also implies that the asymptotic
cost acost(D) is a rational number.

Regarding the complexity of the problem of computing acost(D), we ob-
serve that (i) the size ∣D̄∣ of the multi-distance automaton D̄ is exponential
in ∣D∣, (ii) each simple cycle Li has length at most linear in ∣D̄∣, (iii) the num-
ber m of all simple cycles of D̄ is exponential in ∣D̄∣, and (iv) each constant

30



ci,j = costj(Li)
∣Li∣ can be computed in time polynomial in ∣D̄∣ and ∣Li∣. Over-

all, the problem of computing the asymptotic cost of D is reduced, in time
doubly exponential, to an instance of a linear programming problem. The
latter problem is known to be in P [9], which proves that acost(D) can be
computed in doubly exponential time.

If we consider the threshold problem for the asymptotic cost, that is, the
problem of deciding whether acost(D) ≤ ν for a given a distance automaton
D satisfying the shortcut property and a given rational number ν, then the
complexity can be lowered to coNExp. Indeed, one observes that the cost
of the projection into the j-th component of a simple cycle L of D̄ is at most
∣D̄∣ ⋅ cmax, where cmax is the maximum cost that appears in the transitions of
D̄. This implies that there exist at most M = ∣D̄∣k+1 ⋅ ckmax (i.e., exponentially
in ∣D∣) distinct tuples (c1, . . . , ck, l) such that cj = costj(L) and l = ∣L∣ for
some simple cycle L of D̄. Equation (2) can be then rewritten as

acost(D) = max
α1,...,αM≥0

L1,...,LM simple cycles of D̄

min
1≤j≤k

∑1≤i≤M αi ⋅ costj(Li)
∑1≤i≤M αi ⋅ ∣Li∣

.

and hence acost(D) ≤ ν holds iff for all M -tuples of simple cycles L1, . . . , LM
of D̄, with M = ∣D̄∣2 ⋅ cmax ⋅k, the system of the following linear inequalities in
the variables α1, . . . , αM is unsatisfiable:

α1 ≥ 0
. . .
αM ≥ 0

∑1≤i≤M (cost1(Li) − ν ⋅ ∣Li∣) ⋅ αi > 0
. . .

∑1≤i≤M (costk(Li) − ν ⋅ ∣Li∣) ⋅ αi > 0.

Since satisfiability of systems of linear equations is decidable in polynomial
time, this gives a coNExp algorithm that decides whether acost(D) ≤ ν.
As a consequence, we have that the complexity of the threshold problem for
the asymptotic repair cost for a universal restriction language and a target
language represented by a NFA is between PSpace and coNExp (note
that the PSpace lower bound follows from a reduction from the universality
problem for NFA but it holds also for target languages represented by DFA):

Proposition 4. The problem of deciding, given an alphabet Σ, an NFA T ,
and a rational number ν, whether acost(Σ∗,L (T )) ≤ ν is in coNExp and
it is PSpace-hard already when T is a DFA and ν = 1

2 .
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Proof. The coNExp upper bound of the considered threshold problem fol-
lows directly from the previous arguments. Below, we prove that the analo-
gous problem that involves target languages represented by DFA is already
PSpace-hard. The proof is by reduction of the universality problem for
NFA. Let us fix an NFA A over the alphabet Σ.

First of all, we construct an intermediate NFA T that recognizes the
language (L (A) {#})∗, where # is a fresh symbol not belonging to Σ. Let
∆ = Σ ⊎ {#} and recall that A recognizes the universal language Σ∗ if and
only if ∆∗ is repairable into L (T ) with uniformly bounded cost. In fact, it
is easy to see that the following stronger property holds:

L (A) = Σ∗ iff cost(∆∗,L (T )) < ∞

iff acost(∆∗,L (T )) = 0. (⋆)

Note that this already implies that the threshold problem for the asymptotic
cost of a target NFA is PSpace-hard. Below, we transform the NFA T into
a DFA T ′ such that

cost(∆∗,L (T )) < ∞ implies acost(∆∗,L (T ′)) ≤ 1
2 (a)

acost(∆∗,L (T )) > 0 implies acost(∆∗,L (T ′)) > 1
2 (b)

(note that pairing the implications (a) and (b) with the equivalences in (⋆)
gives the desired reduction).

Intuitively, the DFA T ′ is defined in such a way that it accepts all and
only the successful runs of the NFA T . Precisely, if T = (∆,Q,E, I,F ), then
we define T ′ = (∆′,Q′,E′, q′0, F

′), where

� ∆′ = ∆ ⊎Q;

� Q′ = Q ⊎ (Q ×∆) ⊎ {q′0}, where q′0 is a new state;

� E′ consists of all transitions of the form:

1. (q′0, q, q), with q ∈ I (namely, at the beginning T ′ reads an initial
state q of T as input symbol and accordingly moves from its initial
state q0 to q),

2. (q, b, (q, b)), with q ∈ Q, b ∈ ∆

(namely, on input symbol b ∈ ∆, T ′ moves deterministically from
any state q to the state (q, b)),
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3. ((q, b), q′, q′), with (q, b, q′) ∈ E
(namely, T ′ moves deterministically from state (q, b) to state q′

on input q′, provided that (q, b, q′) is a valid transition of T );

� F ′ = F .

Clearly, the automaton T ′ is deterministic. Moreover, it is easy to see that
the language recognized by T ′ consists of all and only the encodings of the
successful runs of T (here we represent a run of T as a sequence of states
from Q interleaved with letters from ∆).

Let us prove the first implication (a). Suppose that cost(∆∗,L (T )) < ∞,
namely, that ∆∗ can be repaired into L (T ) with uniformly bounded cost.
Let u = a1 a2 . . . a2n−1 a2n be a word of even length over ∆, let v be a word
that belongs to L (T ), and let v′ be the encoding of a successful run of T on
v (hence v′ ∈ L (T ′)). We denote by ueven the sub-sequence obtained from u
by selecting the symbols at the even positions, i.e., ueven = a2 a4 . . . a2n,
and we analyze its edit distance from v. We know form the definition of edit
distance that the word v can be factorized into n (= ∣ueven∣) possibly empty
words v1, v2, . . . , vn such that

dist(ueven, v) = ∑1≤i≤n dist(a2i, vi).
The factorization v1, v2, . . . , vn of v induces a corresponding factorization
v′1, v

′
2, . . . , v

′
n, v

′
n+1 of v′, where ∣v′i∣ = 2 ⋅ ∣vi∣ for all 1 ≤ i ≤ n and ∣v′n+1∣ = 1.

We now observe that for all 1 ≤ i ≤ n,

dist(a2i−1 a2i, v
′
i) ≤ dist(a2i, vi) + max{∣vi∣,1}

and hence

dist(u, v′) ≤ ∑1≤i≤n dist(a2i−1 a2i, v′i) + 1

≤ ∑1≤i≤n (dist(a2i, vi) +max{∣vi∣,1}) + 1

≤ dist(ueven, v) + max{∣ueven∣, ∣v∣} + 1.

Recall that the minimum of dist(ueven, v) over all v ∈ L (T ) is uniformly
bounded by cost(∆∗,L (T )), and it is realized by some word v ∈ L (T ) that
has length ∣v∣ ≤ ∣ueven∣ + dist(ueven, v) ≤ ∣ueven∣ + cost(∆∗,L (T )). We thus
derive

acost(∆∗,L (T ′)) = lim
n→∞

sup
u∈(∆∆)∗

∣u∣≥n

min
v′∈L (T ′)

dist(u, v′)
∣u∣
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≤ lim
n→∞

sup
u∈(∆∆)∗

∣u∣≥n

min
v∈L (T )

dist(ueven, v) + max{∣ueven∣, ∣v∣} + 1

∣u∣

≤ lim
n→∞

sup
u∈(∆∆)∗

∣u∣≥n

2 ⋅ cost(∆∗,L (T )) + ∣ueven∣ + 1

∣u∣

≤ 1

2
.

This proves the first implication (a).
As for the second implication (b), we consider a generic pair of words

u ∈ ∆∗ and v ∈ L (T ). We denote by v′ the encoding of a successful run of T
on v (hence v′ ∈ L (T ′)) and by udouble the word obtained from u by repeating
each letter twice (i.e., udouble = u(1) u(1) u(2) u(2) . . . u(∣u∣) u(∣u∣)). Below
we show that

dist(udouble, v′) ≥ dist(u, v) + ∣u∣ + 1

(we will then argue that this inequality entails the implication (b)).
For the sake of brevity, we write v′ as q0 b1 q1 . . . qn−1 bn qn. We know

from the definition of edit distance that the word udouble can be factorized
into n + 1 words udouble1 , udouble2 , . . ., udoublen+1 such that

dist(udouble, v′) = ∑1≤i≤n dist(udoublei , qi−1bi) + dist(udoublen+1 , qn).

Without loss of generality we can assume that the first factor udouble1 has
even length. Indeed, suppose that this is not the case and let udoublei be the
first factor after udouble1 that is non-empty. Observe that the first symbol
of udoublei coincides with the last symbol of udouble1 . Now, we consider a new
factorization of udouble that is obtained from the previous one by removing the
first symbol from the i-th factor udoublei and by adding it at the end of the first
factor udouble1 . Let us write the new factorization as ũdouble1 , udouble2 , . . ., udoublei−1 ,
ũdoublei , udoublei+1 , . . ., udoublen+1 (notice that only the first and the i-th factor are
changed). It is easy to see that if b1 occurs in ũdouble1 (or, equally, in udouble1 ),
then dist(ũdouble1 , q0b1) = ∣ũdouble1 ∣ − 1 = ∣udouble1 ∣ = dist(udouble1 , q0b1) + 1, otherwise
dist(ũdouble1 , q0b1) = ∣ũdouble1 ∣ = ∣udouble1 ∣ + 1 = dist(udouble1 , q0b1) + 1. Similarly, if bi
occurs in ũdoublei (or, equally, in udoublei ), then dist(ũdoublei , qi−1bi) = ∣ũdoublei ∣−1 =
∣udoublei ∣ − 2 = dist(udoublei , qi−1bi) − 1, otherwise dist(ũdouble1 , q0b1) = ∣ũdoublei ∣ =
∣udoublei ∣ − 1 = dist(udoublei , qi−1bi) − 1. In all cases we have dist(ũdouble1 , q0b1) +
dist(ũdoublei , qi−1bi) = dist(udouble1 , q0b1) + dist(udoublei , qi−1bi). This means that
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we could have equally considered an alternative factorization of udouble that
begins with a factor of even length.

Following similar arguments, we can assume, without loss of generality,
that all factors but the last one have even length. This allows us to define
a corresponding factorization of u as u1, u2, . . . , un, where each ui is the sub-
sequence of udoublei obtained by selecting only the symbols at the odd positions
– note that u = u1 u2 . . . un. Thanks to the above definitions, we have that
for all 1 ≤ i ≤ n,

dist(udoublei , qi−1bi) =
⎧⎪⎪⎨⎪⎪⎩

2 ⋅ dist(ui, bi) if bi does not occur in ui,

2 ⋅ dist(ui, bi) + 1 if bi occurs in ui,

and hence, letting I be the set of indices i ∈ {1, . . . , n} such that bi occurs in
ui, we obtain

dist(udouble, v′) = ∑
1≤i≤n

dist(udoublei , qi−1bi) + dist(udoublen+1 , qn)

= ∑
1≤i≤n

2 ⋅ dist(ui, bi) + ∣I ∣ + max{1, ∣udoublen+1 ∣}

= dist(u, v) + ∑
1≤i≤n

dist(ui, bi) + ∣I ∣ + max{1, ∣udoublen+1 ∣}

= dist(u, v) + ∑
1≤i≤n

∣ui∣ + max{1, ∣udoublen+1 ∣}

≥ dist(u, v) + ∣u∣.

We thus conclude that

acost(∆∗,L (T ′)) ≥ lim
n→∞

sup
u∈∆∗

∣udouble∣≥n

min
v′∈L (T ′)

dist(udouble, v′)
∣udouble∣

≥ lim
n→∞

sup
u∈∆∗

∣udouble∣≥n

min
v∈L (T )

dist(u, v) + ∣u∣
2 ⋅ ∣u∣

= acost(∆∗,L (T )) + 1

2

which immediately entails the implication (b).
Finally, observe that, as the NFA T satisfies property (⋆) and the DFA

T ′ satisfies both implications (a) and (b), we have that L (A) = Σ∗ implies
cost(∆∗,L (T )) < ∞, and hence acost(∆∗,L (T ′)) ≤ 1

2 ; conversely, L (A) ≠
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Σ∗ implies acost(∆∗,L (T )) > 0, and hence acost(∆∗,L (T ′)) > 1
2 . This

reduces the universality problem for the NFA A to a threshold problem for
the asymptotic repair cost of a DFA T ′.

4.4. Asymptotic cost in the general case

Here we show how to generalize the characterization of the asymptotic
cost in the unrestricted case to our original repair problem, which involves
the presence of both a restriction and a target language. We first modify
the definition of asymptotic cost for a distance automaton to include the
presence of a restriction language L (R) recognized by an NFA R:

acost(R,D) =def lim
n→∞

sup
u∈L (R)
∣u∣≥n

D(u)
∣u∣ .

Thanks to Proposition 1, we have that the asymptotic cost acost(R,T ) for
two regular languages R and T recognized by NFA R and T is equal to
acost(R,Dedit

T ).
As usual, given a distance automaton D satisfying the shortcut property,

we denote by D̄ the multi-distance automaton det(D∣C1) × . . . × det(D∣Ck),
where C1, . . . ,Ck are all the SCCs of D. Moreover, given an NFA R and a
SCC B of it, we consider the synchronized product D̄ × (R∣B) of the multi-
distance automaton D̄ and the sub-automaton R∣B, which is obtained from
R by restricting the set of states to B (it does not matter which state is
chosen to be initial/final in R∣B). We then denote by LB1 , . . . , L

B
mB all the

simple cycles of D̄ × (R∣B). Finally, given a simple cycle LBi of D̄ × (R∣B)
and a SCC C of D, we denote by costC(LBi ) the cost of the projection of LBi
into the component C of D̄ × (R∣B). The generalized characterization result
is as follows:

Theorem 2. For every (trimmed) NFA R and every (trimmed) distance
automaton D satisfying the shortcut property,

acost(R,D) = max
τ=B1...Bh ∈ dag(R)

α
B1
1 , ..., α

B1

mB1
≥0

......

α
Bh
1 , ..., α

Bh

mBh
≥0

min
π=C1...Ch ∈ dag(D)

∑
1≤l≤h

1≤i≤mBl

αBl
i ⋅ costCl

(LBl
i )

∑
1≤l≤h

1≤i≤mBl

αBl
i ⋅ ∣LBl

i ∣

(5)
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Proof sketch. The proof is very similar to the proof of Theorem 1. In partic-
ular, we prove two inequalities between the asymptotic cost acost(R,D) and
the right handside expression.

Let us consider first the inequality

acost(R,D) ≤ max
τ=B1...Bh ∈ dag(R)

α
B1
1 , ..., α

B1

mB1
≥0

......

α
Bh
1 , ..., α

Bh

mBh
≥0

min
π=C1...Ch ∈ dag(D)

∑
1≤l≤h

1≤i≤mBl

αBl
i ⋅ costCl

(LBl
i )

∑
1≤l≤h

1≤i≤mBl

αBl
i ⋅ ∣LBl

i ∣

In order to prove this inequality, one needs to fix, as in Lemma 3, a family
of words (u(n))n∈N from the restriction language L (R) such that

acost(D) = lim sup
n→∞

D(u(n))
∣u(n)∣ .

By possibly restricting to sub-families of words, one can replace lim sup by
lim in the above equation.

One new ingredient is the following. Without loss of generality, we can
also assume that all words u(n) induce successful runs on the NFA R follow-
ing the same path of SCCs of R. More precisely, we denote by σ(n) some
successful run of R on u(n), and by τ (n) the path in dag(R) that consists
of the sequence of SCCs visited by σ(n). Then, since there are only a finite
number of paths in dag(R), we can restrict ourselves to suitable sub-families
of words and runs in such a way that all paths τ (n) are the same. We denote
them simply by τ = B1 . . .Bh.

The proof then continues as follows. We partition the domain of each
run σ(n) of the NFA R into some intervals Y

(n)
1 , . . . , Y

(n)
h (recall that h is

the number of SCCs in the path τ) in such a way that each sub-sequence

σ(n)∣Y (n)
l , for 1 ≤ l ≤ h, is a run of the sub-automaton R∣Bl on the sub-word

u(n)∣Y (n)
l (in fact the sets Y

(n)
1 , . . . , Y

(n)
h do not form a partition of the entire

domain of σ(n), since there can be transitions crossing different SCCs in R;
however, the number of these transitions is at most the number of SCCs
in R, and thus their cost is negligible for n that tends to ∞). One then
considers the (unique) successful run ρ(n) of D̄ on the word u(n). Given an

index 1 ≤ l ≤ h and a SCC C of D, we denote by ρ
(n)
l,C the projection of
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the sub-run ρ(n)∣Y (n)
l into the component C. Every sequence ρ

(n)
l,C can be

viewed as a run of det(D∣C) on the sub-word u(n)∣Y (n)
l . This run has cost

almost equal (up to additive constants) to the cost of some optimal run γ
(n)
l,C

of D∣C on u(n)∣Y (n)
l . Moreover, given a path π = C1 . . .Ch in dag(D), one can

construct a run γ
(n)
π of D on u(n) by ‘concatenating’ the runs γ

(n)
1,C1

, . . . , γ
(n)
h,Ch

(this requires the use of the shortcut property to correct the possible pairs
of consecutive transitions that have unmatched states). This shows that

D(u(n)) ≤ min
π=C1...Ch ∈ dag(D)

cost(γ(n)
π ) + O(1)

= min
π=C1...Ch ∈ dag(D)

∑1≤l≤h cost(γ(n)
l,Cl

) + O(1)

= min
π=C1...Ch ∈ dag(D)

∑1≤l≤h cost(ρ(n)l,Cl
) + O(1).

Given the above inequality, the rest of the proof is similar to that of Lemma 3,
namely, we decompose each run ρ

(n)
l,Cl

into simple cycles and we approximate
its cost up to additive constants.

We now turn to the converse inequality:

acost(R,D) ≥ max
τ=B1...Bh ∈ dag(R)

α
B1
1 , ..., α

B1

mB1
≥0

......

α
Bh
1 , ..., α

Bh

mBh
≥0

min
π=C1...Ch ∈ dag(D)

∑
1≤l≤h

1≤i≤mBl

αBl
i ⋅ costCl

(LBl
i )

∑
1≤l≤h

1≤i≤mBl

αBl
i ⋅ ∣LBl

i ∣

As in the proof of Lemma 4, the first step is to fix a path τ = B1 . . .Bh in
dag(R) and some parameters αBl

i ≥ 0 for each 1 ≤ l ≤ h and each 1 ≤ i ≤mBl ,
where mBl denotes the number of simple cycles of the automaton D̄×(R∣Bl).

One proves the inequality by defining the following family of runs of D̄×R:

ρ(n) =def σ0 (ρ(n)1,cycles)
n
. . . σh−1 (ρ(n)h,cycles)

n
σh

where, for all 1 ≤ l ≤ h,

ρ
(n)
l,cycles =def (LBl

1 )⌈n⋅α
Bl
1 ⌉ σl,1 (LBl

2 )⌈n⋅α
Bl
2 ⌉ . . . σl,mBl−1 (LBl

mBk
)⌈n⋅α

Bl

mBl
⌉
σl,mBl

and σ0, σ1, . . . , σh, σl,1, . . . , σl,mBl are suitable runs of D̄ of bounded length

that connect the various simple cycles LBl
i . Accordingly, one defines u(n) to
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be the word spelled out by the run ρ(n). Observe that, by construction (and
under the assumption that the automaton R is trimmed), this word belongs
to the language recognized by the NFA R.

It is not difficult then to generalize the arguments used in Lemma 4 (we
thus omit the details).

Using arguments similar to the complexity analysis of the unrestricted
case, we obtain a coNExp algorithm that decides whether the asymptotic
repair cost acost(L (R),L (T )) (= acost(R,Dedit

T )) associated with two NFA
R and T is less than or equal to a certain threshold ν ∈ Q:

Corollary 1. The problem of deciding, given two NFA R and T and a ra-
tional number ν, whether acost(L (R),L (T )) ≤ ν is in coNExp.

5. Asymptotic cost in the streaming case

Here we characterize the asymptotic repair (aggregate) cost in the stream-
ing setting in terms of the value of a mean-payoff game [7].

5.1. Mean-payoff games

A mean-payoff game is an infinite, turn-based game played over an arena
A = (V,E, v0), where V is the union of two disjoint finite sets of vertices, VAdam
(owned by player Adam) and VEve (owned by player Eve), E ⊆ V ×N×V is a
finite set of weighted edges, and v0 ∈ V is an initial vertex. The game starts
at v0 and, at each round, the player who owns the current vertex v moves
along an edge (v, c, v′) ∈ E. The reward for Adam (resp., the penalty for
Eve) in an infinite play π = (v0, c1, v1) (v1, c2, v2) . . . is given by the value
νπAdam (resp., νπEve), where

νπAdam =def lim inf
n→∞

∑n
i=1 ci
n

νπEve =def lim sup
n→∞

∑n
i=1 ci
n

.

Intuitively, Adam wants to maximize his reward νπAdam while Eve wants to
minimize her penalty νπEve.

It is known from [7] that, in any mean-payoff game, the best reward
that can be enforced by Adam coincides with the least penalty that can be
enforced by Eve, and, furthermore, these values can be achieved by positional
strategies:
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Theorem 3 (Ehrenfeucht and Mycielski [7]). We can associate with each
mean-payoff game A a value νA such that Adam (resp., Eve) has a positional
strategy that guarantees νπAdam ≥ νA (resp., νπEve ≤ νA) for all plays π that
respect his (resp., her) strategy.

In view of the above theorem, we can denote by νA the value of a mean-
payoff game over the arena A and we can restrict ourselves to positional
strategies for both Adam and Eve. We will represet a positional strategy for
Adam (resp., Eve) as a function from Adam’s vertices (resp., Eve’s vertices)
to outgoing edges.

5.2. Characterization of asymptotic streaming cost

Let R and T be the languages recognized by two (trimmed) DFA
R = (Σ,Q, δ, q0, F ) and T = (∆,Q′, δ′, r0, F ′), respectively. To compute
the asymptotic cost acostaggr0−lookahead(R,T ) for streaming (0-lookahead) repair
strategies we construct the arena AR,T , where Adam’s vertices are pairs of
the form (q, r), with q ∈ Q and r ∈ Q′, and Eve’s vertices are pairs of the form
(q, r, a), with q ∈ Q, r ∈ Q′, and a ∈ Σ. The edges of the arena are triples of the
form ((q, r),0, (q′, r, a)), where q′ = δ(q, a), or of the form ((q, r, a), c, (q, r′)),

where r′ ∈ Q′ and c = min{dist(a, v) ∶ v ∈ L (Tr,r′)}. (recall that Tr,r′ is the
DFA obtained from T by letting r be the initial state and r′ be the unique fi-
nal state). The initial vertex of the arena is the pair (q0, r0) (so Adam moves
first). Observe that the final states of R and T do not play any relevant role
in this definition: this is because R and T are assumed to be trimmed and
the costs of moving from non-final states to final states are irrelevant for the
asymptotic behavior. Furthermore, note that the game alternates between
Adam and Eve, and only the second player can incur positive costs.

Remark 2. In order to avoid that players get stuck at some vertices of the
arena AR,T that have no outgoing edges, we tacitly assume that all states of
the DFA R and T can reach non-transient states (i.e., states contained in
some cycles). In particular, as the automata are also trimmed, we have that
for all states q ∈ Q and r ∈ Q′, both languages L (Rq,F ) and L (Tr,F ′) contain
infinitely many words. Note that it is safe to make this assumption when
considering the streaming asymptotic cost, as this cost is preserved when we
remove the states that can only reach transient states.

Below, we show that the value of the mean-payoff game over AR,T , mul-
tiplied by 2, coincides with the asymptotic aggregate cost in the streaming
setting.
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Figure 2: Two DFA and the arena for the associated mean-payoff game.

Theorem 4. For all (trimmed) DFA R and T , we have

acostaggr0−lookahead(L (R),L (T )) = 2 ⋅ νAR,T

where νAR,T is the value of the mean-payoff game over the arena AR,T . More-
over, acostaggr0−lookahead(L (R),L (T )) is rational, it can be computed in poly-
nomial time, and it is achieved by a single streaming edit strategy for L (R)
and L (T ) – which can also be computed in P.

Example 6. Consider the restriction and target languages R = (a + b)∗ and
T = (ab)∗, whose automata R and T and mean-payoff arena AR,T are shown
in Figure 2 (diamond nodes are owned by Eve and square nodes are owned
by Adam). One can easily see that an optimal positional strategy for Adam
is to play (q, r) AdamÐÐ→ (q, r, b) and (q, s) AdamÐÐ→ (q, s, a). With this optimal
strategy we get that the value νAR,T of the mean-payoff game over AR,T is
equal to 1

2 and thus acostaggr0−lookahead(R,T ) = 1. This value contrasts with the
non-streaming asymptotic cost between R and T , which is equal to 1

2 .

Even if it seems natural that the value of the mean-payoff game over AR,T
determines the asymptotic cost acostaggr0−lookahead(L (R),L (T )), the proof of
the Theorem 4 is not trivial. Indeed, the mean-payoff game corresponds di-
rectly to a version of the streaming repair problem where the input to the
repair strategy is a sequence of prefixes of a single infinite word spelled by
a run of R. The core of the proof is to show a correspondence between the
this infinitary version of the streaming repair problem and the original prob-
lem as stated in Section 3. This is done by proving two inequalities. In one
case (Lemma 5) we show that (⋆) for an optimal strategy S of Eve in the
mean-payoff game, one can construct a streaming repair strategy S ′ for R
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and T such that
acostaggrS′ (L (R),L (T ))

2
does not exceed the penalty for

Eve induced by her strategy S. Intuitively, the repair strategy S ′ mimics
Eve’s strategy S until the string terminates, at which point it performs ad-
ditional insertions to get to a final state. For the other direction (Lemma 6)
we consider a streaming repair strategy S ′ for R and T with asymptotic cost
acostaggrS′ (L (R),L (T )) and we show that no strategy S for Adam can guar-

antee a reward of more than
acostaggrS′ (L (R),L (T ))

2
. By the result from

[7] mentioned above, this shows that Eve can enforce a penalty less than or
equal to this amount. The limit on Adam’s ability is shown by combating
his strategy S using the repair strategy S ′. Putting these two directions to-
gether, we see that the optimal streaming repair strategy is produced by first
computing Eve’s optimal strategy, and then applying the transformation (⋆)
described above; one can then argue that this strategy can be computed in
polynomial time from R and T .

Lemma 5. For all (trimmed) DFA R and T and all streaming repair strate-
gies S for L (R) and L (T ), we have 2 ⋅ νAR,T ≤ acostaggrS (L (R),L (T )).

Proof. Let us fix two DFA R = (Σ,Q, δ, q0, F ) and T = (∆,Q′, δ′, r0, F ′) and
a transducer S = (Σ,∆,Q′′, δ′′, s0,Ω) that implements a streaming repair
strategy for L (R) and L (T ). Let us also fix an optimal positional strategy
f ∶ Q ×Q′ → E for Adam, where E is the set of edges of the arena AR,T .

On the basis of the transducer S and Adam’s positional strategy f , we
inductively construct (i) an infinite play π on AR,T , (ii) an infinite word
u ∈ Σω, and (iii) an infinite run ρ of S on u, as follows. The first edge of
the play π is given by Adam’s move f(v0) = (v0,0, v1), where v0 = (q0, r0).
Accordingly, the first symbol of the word u is the symbol a1 that is contained
in the vertex v1 (note that v1 ∈ Q×Q′ ×Σ). The run ρ of S at the beginning
is the empty sequence. As for the induction step, we first extend ρ and π,
using the transducer S, and then we extend π and u, using Adam’s strategy
again. Formally:

� Given a prefix (v0,0, v1) (v1, c1, v2) . . . (v2n,0, v2n+1) of π that ends
in a vertex v2n+1 = (qn+1, rn, an+1) owned by Eve and given the cor-
responding prefix a1 . . . an+1 of u, we extend the prefix of ρ from
s0

a1/w1ÐÐ→ . . . an/wnÐÐ→ sn to s0
a1/w1ÐÐ→ . . . an/wnÐÐ→ sn

an+1/wn+1ÐÐ→ sn+1, where
δ′′(sn, an+1) = (wn+1, sn+1). Accordingly, we extend the prefix of π by
adding the edge (v2n+1, cn+1, v2n+2), where v2n+2 = (qn+1, rn+1), rn+1 is
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the state of T reached from rn after consuming the word wn+1, and
cn+1 = min{dist(an+1,w) ∶ w ∈ L (Trn,rn+1)}.

� Similarly, given a prefix (v0,0, v1) (v1, c1, v2) . . . (v2n+1, cn+1, v2n+2) of
π that ends in a vertex v2n+2 = (qn+1, rn+1) owned by Adam, we ex-
tend it using Adam’s positional strategy f , namely, by adding the edge
f(v2n+2) = (v2n+2,0, v2n+3). Accordingly, we extend the prefix of u from
a1 . . . an+1 to a1 . . . an+1 an+2, where an+2 is the symbol contained in
the vertex v2n+3.

It is easy to check that the above definitions lead to an infinite play

π = (v0,0, v1) (v1, c1, v2) (v2,0, v3) . . .

over the arena AR,T , and an infinite run

ρ = s0
a1/w1ÐÐ→ s1

a2/w2ÐÐ→ . . .

of the transducer S on the word u = a1 a2 . . . such that, for every n ∈ N,
cn ≤ dist(an,wn). The play π clearly respects Adam’s optimal strategy and
hence, by Theorem 3, we have νAR,T ≤ νπAdam. Moreover, observe that every
prefix a1 . . . an of the infinite word u can be extended to a word a1 . . . an w′

n

that belongs to the restriction language L (R), where w′
n has length at most

∣Q∣. By applying the various definitions and some basic rewriting, we easily
obtain:

2 ⋅ νAR,T ≤ 2 ⋅ νπAdam

= 2 ⋅ lim inf
n→∞

∑n
i=1 ci

2 ⋅ n

≤ lim inf
n→∞

∑n
i=1 dist(an,wn)

n

≤ lim sup
n→∞

∑n
i=1 dist(an,wn)

n

= lim sup
n→∞

costaggr(a1 . . . an w′
n, S)

n + ∣w′
n∣

≤ acostaggrS (L (R),L (T )).
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Lemma 6. For all (trimmed) DFA R and T , there is a transducer S, whose
states are pairs of states of R and T , that implements a streaming repair
strategy for L (R) and L (T ) and such that acostaggrS (L (R),L (T )) ≤ 2 ⋅
νAR,T .

Proof. We fix two DFA R = (Σ,Q, δ, q0, F ) and T = (∆,Q′, δ′, r0, F ′) and
an optimal positional strategy g ∶ Q ×Q′ × Σ → E for Eve, where E is the
set of edges of the arena AR,T . We then construct from that a transducer
S = (Σ,∆, VAdam, δ′′, v0,Ω) as follows:

� VAdam = Q ×Q′ is the set of vertices of AR,T owned by Adam;

� δ′′ is the function that maps any pair (v, a) ∈ VAdam ×Σ, with v = (q, r),
to the (unique) pair (w, v′) ∈ ∆∗×VAdam, with v′ = (q′, r′), that satisfies

1. g(va) = (va, c, v′), with va = (δ(q, a), r, a) (note that va ∈ VEve),
2. w ∈ L (Tr,r′), with dist(a,w) = c (note that since (va, c, v′) is an

edge in AR,T , there exist such a word w).

� v0 = (q0, r0) is the initial vertex of AR,T ,

� Ω is the function that maps any vertex v = (q, r) ∈ VAdam to a word
w from the language ⋃r′∈F ′ L (Tr,r′) (since T is pruned, there always
exists such a word).

Observe that S implements a streaming strategy for repairing L (R) into
L (T ) (it basically differs from Eve’s strategy only in the use of the final
output function Ω, which guarantees that the edited words belong to the
target language L (T )). Moreover, by definition, the states of the transducer
S range over the set VAdam = Q ×Q′.

Let us now consider a family of words (u(n))
n∈N from the restriction lan-

guage L (R) such that

acostaggrS (L (R),L (T )) = lim sup
n→∞

costaggrS (u(n))
∣u(n)∣ .

Moreover, let L1, . . . , Lm be all the simple cycles of the transition graph of
S and let ρ(n) be the run of S on the word u(n). We use the simple cycle
decomposition Lemma 2 from Section 4 to find a partition of the domain of
ρ(n) into (possibly non-convex) subsets X

(n)
0 ,X

(n)
1 , . . . ,X

(n)
m such that
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1. ∣X(n)
0 ∣ is uniformly bounded by the number K of states of S,

2. for all 1 ≤ i ≤m, the sub-sequence ρ(n)∣X(n)
i is a repetition of the simple

cycle Li of S.

As usual, we denote by occ
(n)
i the number of repetitions of the simple cycle

Li in the sub-sequence ρ(n)∣X(n)
i , namely, we let occ

(n)
i = ∣X(n)i ∣

∣Li∣ . We have that

lim sup
n→∞

costaggrS (u(n))
∣u(n)∣ ≤ lim sup

n→∞

∑1≤i≤m occ
(n)
i ⋅ cost(Li) + K ⋅ cmax

∑1≤i≤m occ
(n)
i ⋅ ∣Li∣ + K

where cost(Li) denotes the sum of the costs of the transitions in the simple
cycle Li and cmax denotes the maximum cost of a transition of S. Note that
the additive terms K ⋅cmax and K above can be ignored when considering the
limit for n tending to infinity. Moreover, it is easy to see that the following
inequality holds

lim sup
n→∞

∑1≤i≤m occ
(n)
i ⋅ cost(Li)

∑1≤i≤m occ
(n)
i ⋅ ∣Li∣

≤ max
1≤i≤m

cost(Li)
∣Li∣

.

For the sake of brevity, we denote by L some simple cycle among L1, . . . , Lm
that maximizes the ratio cost(L)

∣L∣ , namely, such that

max
1≤i≤m

cost(Li)
∣Li∣

= cost(L)
∣L∣ .

We now construct a strategy for Adam in the mean-payoff game over
AR,T by following the simple cycle L. We denote by uL be the word that
forms the input of the simple cycle L and by u0 any word that makes the
DFA R move from its initial state q0 to the state that appears in the first/last
position of L (recall that the states of S are pairs of states from R and T ).
Clearly, the infinite word u0 uωL induces an infinite run inside the automaton
R. Adam’s strategy will follow precisely this infinite word, choosing at each
round n the edge in AR,T that corresponds to the correct transition that
consumes the n-th symbol of u0 uωL.

Pairing Adam’s strategy given above with Eve’s strategy, we obtain an
infinite ‘cyclic’ play π = (v0,0, v1) (v1, c1, v2) . . . over AR,T . By construction,
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the average cost incurred by Eve in following the play π′ coincides with cost(L)
2⋅∣L∣ ,

namely,
cost(L)
2 ⋅ ∣L∣ = νπEve

Finally, recall that Eve’s strategy was assumed to be optimal and hence, by
Theorem 3,

νπEve ≤ νAR,T .

Summing up, we just proved that

acostaggrS (L (R),L (T )) = lim sup
n→∞

costaggrS (u(n))
∣u(n)∣

≤ lim sup
n→∞

∑1≤i≤m occ
(n)
i ⋅ cost(Li)

∑1≤i≤m occ
(n)
i ⋅ ∣Li∣

≤ max
1≤i≤m

cost(Li)
∣Li∣

= 2 ⋅ νπEve
≤ 2 ⋅ νAR,T .

We now turn to the proof of Theorem 4.

Proof of Theorem 4. Let νAR,T be the value of the mean-payoff game over
AR,T . We know from Lemma 5 that for every streaming repair strategy
S for L (R) and L (T ), 2 ⋅ νAR,T ≤ acostaggrS (L (R),L (T )). Since the
asymptotic repair cost acostaggr0−lookahead(L (R),L (T )) in the streaming case is
defined as the infimum of acostaggrS (L (R),L (T )) over all streaming repair
strategies S, we have

2 ⋅ νAR,T ≤ acostaggr0−lookahead(L (R),L (T )).

Conversely, we know from Lemma 6 that there is a streaming repair strat-
egy S for L (R) and L (T ) such that acostaggrS (L (R),L (T )) ≤ 2 ⋅ νAR,T

and hence, since acostaggr0−lookahead(L (R),L (T )) ≤ acostaggrS (L (R),L (T )), we
have

acostaggr0−lookahead(L (R),L (T )) ≤ 2 ⋅ νAR,T .

We have just shown that acostaggr0−lookahead(L (R),L (T )) = 2 ⋅ νAR,T .
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Now, recall that from the results in [10] the value νAR,T is rational and
it can be computed by a deterministic procedure that runs in time O(∣V ∣2 ⋅
∣E∣ ⋅ cmax), where V is the set of vertices of the arena AR,T (hence ∣V ∣ ≤
∣Q∣ ⋅ ∣Q′∣ ⋅ (∣Σ∣ + 1)), E is the set of edges of AR,T (hence ∣E∣ ≤ ∣V ∣2), and
cmax is the maximum weight of an edge in AR,T . Since cmax never exceeds
the number ∣Q′∣ of states of the target automaton T , this gives a polynomial
time procedure for computing the value νAR,T of the mean-payoff game over
AR,T (and hence the asymptotic cost acostaggr0−lookahead(L (R),L (T ))).

It remains to show that the asymptotic cost acostaggr(L (R),L (T )) is
achieved by a single streaming edit strategy for L (R) and L (T ) whose
states range over Q×Q′. This is proven again using the previous two lemmas.
For every streaming edit strategy S for L (R) and L (T ), there is a streaming
edit strategy S ′ for the same languages whose states range over Q ×Q′ (let
us call such a strategy positional) and such that

acostaggrS′ (L (R),L (T )) ≤ 2 ⋅ νAR,T ≤ acostaggrS (L (R),L (T )).

Without loss of generality, we can also assume that, at each step, the trans-
ducer S ′ outputs a word of length at most ∣Q′∣2, that is, for every symbol
a ∈ Σ and every state s of S ′, if s a/wÐÐ→ s′ is a transition of S ′, then ∣w∣ ≤ ∣Q′∣2.
It is safe to make this assumption because the replacement in any transition
s a/wÐÐ→ s′ of w by w′, where w′ minimizes dist(a,w′′) among all words w′′

that are Myhill-Nerode equivalent to w (i.e., w ∈ L (Tr,r′) iff w′′ ∈ L (Tr,r′)
for all r, r′ ∈ Q′) can only result in a discount of the overall aggregate cost
incurred by the streaming repair strategy S.

The above arguments show that we can equivalently calculate the asymp-
totic cost acostaggr0−lookahead(L (R),L (T )) as the infimum over all positional
streaming repair strategies S ′ for L (R) and L (T ) that, at each step, output
words of length at most ∣Q′∣2. Since there are only finitely many such strate-
gies, we conclude that the asymptotic cost acostaggr0−lookahead(L (R),L (T )) is
achieved by a single positional streaming edit strategy S ′.

5.3. Asymptotic streaming cost with lookahead

We conclude the section by mentioning some natural generalizations of
Theorem 4 related to streaming repair strategies with lookahead.

First of all, we observe that in order to compute the asymptotic cost of an
optimal streaming repair strategy with k-lookahead, where k ∈ N is a given
parameter, it is sufficient to modify the definition of the arena AR,T in such
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a way that Adam plays (k + 1)-character windows representing substrings
of an infinite word. This requires extending the set of vertices of the arena
AR,T from (Q×Q′)∪(Q×Q′×Σ) to (Q×Q′×Σk)∪(Q×Q′×Σk+1) and letting
the game start from any vertex of the form (p0, q0, u0), where p0 is the initial
state of R, q0 is the initial state of T , and u0 ∈ Σk. We denote by Ak−lookaheadR,T
the new arena and by νAk−lookahead

R,T
the value of the mean-payoff game associated

with it. Following the same arguments of the proof of Theorem 4, one shows
that

acostaggrk−lookahead(L (R),L (T )) = 2 ⋅ νAk−lookahead
R,T

.

We also know that streaming repair strategies with longer lookahead out-
perform those with shorter lookahead, that is, acostaggrk−lookahead(R,T ) is a non-
increasing function of k ∈ N.

Now, it becomes natural to ask whether one can compute the inferior
of the asymptotic costs for all possible streaming strategies with finite (un-
bounded) lookahead, and whether this value can be achieved using a fixed
amount of lookahead that only depends on the restriction and target lan-
guages. For instance, a similar result for quantitative games has been proven
in [11]. As we are not able to answer these questions, we address in the
following a simpler threshold problem for the streaming asymptotic cost:

Theorem 5. Given two DFA R and T and a rational threshold ν, one can
decide in double exponential time whether there is k ∈ N such that

acostaggrk−lookahead(L (R),L (T )) < ν.

The proof of Theorem 5 is based on a reduction of the game-theoretic
version of the streaming repair problem (i.e., a mean-payoff game with arbi-
trary lookahead) to a suitable regular infinite game that is similar to the type
of games considered in [11]. Below, we recall the two types of games we are
dealing with. The first type of game is a mean-payoff game played by Adam
and Eve over an arena of the form Ak−lookaheadR,T , where R and T are two DFA
and k is a lookahead parameter. We have already shown that the value of
this game characterizes the k-lookahead streaming asymptotic cost for R and
T . The second type of game is a qualitative game between two players, Input
and Output, who act according to the following rules. Player Input moves
first by choosing 2 elements q0, q1 from a fixed finite set Q; player Output
responds by choosing a single element r0 from another finite set Q′. At the
next round, player Input chooses another element q2 ∈ Q, and player Output
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responds by choosing r1 ∈ Q′. The game continues in this way by alternating
between the two players. The resulting play is an infinite sequence

w = ( q0r0 )( q1r1 )( q2r2 ) . . . .

The winner is determined by a given regular ω-language L ⊆ (Q×Q′)ω, that
is, player Input wins the game over L if he can enforce infinite plays w ∈ L.
Notice that, in the above game, player Output has a slight advantage in that
his moves are one step behind those of player Input. We call this type of
game a 1-lookahead regular game.

Part of the proof of Theorem 5 requires also a bit of reasoning on non-
streaming asymptotic costs. The following lemma discloses a technical prop-
erty that will be used in the sequel.

Lemma 7. Given a threshold ν ∈ Q and two DFA R and T such that
acost(L (R),L (T )) < ν, there is a number maxlengthνR,T such that, for all
words u ∈ L (R),

∣u∣ > maxlengthνR,T implies min
v∈L (T )

dist(u, v)
∣u∣ < ν.

Proof. We remark that the following proof is not constructive, so it does not
provides any effective means of computing the number maxlengthνR,T from R,
T , and ν. As a matter of fact, computing such a number would enable us to
compute the least amount of lookahead k that satisfies the claim of Theorem
5.

Let R and T be two DFA such that acost(L (R),L (T )) < ν. It is easy to
see that there exist only finitely many words u ∈ L (R) that are at normalized
distance from L (T ) at least ν – indeed, if this were not the case, then we

would have that the limit superior of min
v∈L (T )

dist(u,v)
∣u∣ for arbitrarily long words

u ∈ L (R) would be at least ν, thus contradicting acost(L (R),L (T )) < ν.
This enables the use of max in the following definition:

maxlengthνR,T =def max{∣u∣ ∶ u ∈ L (R), min
v∈L (T )

dist(u, v)
∣u∣ ≥ ν} .

Thanks to the above definition, we have that for all words u ∈ L (R),
∣u∣ > maxlengthνR,T implies min

v∈L (T )
dist(u,v)

∣u∣ < ν.
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The following lemma reduces the threshold problem for the arbitrary-
lookahead streaming asymptotic cost to the problem of deciding the winner
of a 1-lookahead regular game.

Lemma 8. Given two DFA R and T and a rational number ν, one can com-
pute in double exponential time a parity automaton AR,T ,ν of size polynomial
in ∣R∣ ⋅ ∣T ∣ that recognizes a regular ω-language L such that:

1. if Input wins the 1-lookahead regular game on L, then 2 ⋅νAk−lookahead
R,T

≥ ν,

for all k ∈ N,

2. if Output wins the 1-lookahead regular game on L, then 2 ⋅
νAk−lookahead

R,T
< ν, for all k ≥ kmax, where kmax depends only on R, T ,

and ν.

Proof. We first define the language L on the basis of the two DFA R =
(Σ,Q, δ, q0, F ) and T = (∆,Q′, δ′, q′0, F

′) and the rational number ν. The
alphabet of L is the product Q × Q′ of the state spaces of R and T . L
contains all infinite sequences

w = ( q0r0 )( q1r1 )( q2r2 ) . . .

such that

1. q0 is the initial state of R,

2. for all i ∈ N, ∣L (Rqi,qi+1)∣ = ∞, namely, R consumes arbitrarily long
words from state qi to state qi+1;

3. at least one of the following conditions holds:

a) r0 is not the initial state of T ,

b) there is i ∈ N such that L (Tri,ri+1) = ∅,

c) for all but finitely many i ∈ N, acost(L (Rqi,qi+1),L (Tri,ri+1)) ≥ ν,
namely, there are arbitrarily long words ui ∈ L (Rqi,qi+1) having
normalized distance from L (Tri,ri+1) at least ν.

Note that L is a boolean combination of safety, reachability, and liveness
properties, and thus it is a regular language. It is also easy to construct
a parity automaton AR,T ,ν that has approximately O(∣Q × Q′∣) states and

50



that recognizes L. We omit the formal definition of AR,T ,ν and we only
observe that in order to compute AR,T ,ν , one needs to solve a number of
threshold problems for the non-streaming asymptotic costs associated with
the languages L (Rq,q′) and L (Tr,r′): this can be done in doble exponential
time using the procedure described in Section 4.

We also make the following crucial observation. In the definition of the
language L, we could have equally rewritten Condition 3.c) as

3. c’) for infinitely many i ∈ N, acost(L (Rqi,qi+1),L (Tri,ri+1)) ≥ ν.

Indeed, it is clear that any infinite play that satisfies Condition 3.c) also satis-
fies Condition 3.c’). As for the converse implication, consider an infinite play
w = ( q0r0 )( q1r1 )( q2r2 ) . . . that satisfies both Condition 2. and Condition 3.c’),
but not Condition 3.b). Since w satisfies Condition 3.c’), by the Pigeonhole
Principle there exist two pairs (q̃, r̃), (q̃′, r̃′) ∈ Q×Q′ that occur consecutively
and infinitely often in w and such that acost(L (Rq̃,q̃′),L (Tr̃,r̃′)) ≥ ν. To
derive Condition 3.c) it is sufficient to show that for all pairs (q, r), (q′, r′) ∈
Q×Q′ that occur infinitely often in w, acost(L (Rq,q′),L (Tr,r′)) ≥ ν holds.
Let (q, r), (q′, r′) be two such pairs. Observe that w contains a substring of
the form

( qr ) . . . ( q̃r̃ )( q̃
′

r̃′
) . . . ( q′

r′
) . . . ( qr ) . . . ( q̃r̃ )( q̃

′

r̃′
) . . . ( q′

r′
).

Notice that (i) L (Rq,q′) ⊇ L (Rq,q̃) L (Rq̃,q̃′) L (Rq̃′,q′), (ii) both L (Rq,q̃)
and L (Rq̃′,q′) are non-empty (this follows from the fact that w satisfies Con-
dition 2.), and (iii) both L (Tr̃,r) and L (Tr′,r̃′) are non-empty (this follows
from the fact that w does not satisfy Condition 3.b)). From these properties
we easily derive

acost(L (Rq,q′),L (Tr,r′)) = acost(L (Rq,q′),L (Tr̃,r̃′))
≥ acost(L (Rq̃,q̃′),L (Tr̃,r̃′))
≥ ν.

This shows that Conditions 3.c) and 3.c’) are interchangeable when they are
used in the definition of the winning condition L.

Below, we prove a correspondence between the outcomes of the mean-
payoff games over the arenas Ak−lookaheadR,T , for all k ∈ N, and the winners of
regular games on L. The correspondence can be described as follows. If
player Input wins the 1-lookahead regular game by satisfying Conditions 1.,
2., and 3.c) (this is the interesting case), then, in the k-lookahead streaming
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repair game, player Adam can choose, from some point onwards, arbitrarily
long words ui ∈ L (Rqi,qi+1) with normalized distance from L (Tri,ri+1) at
least ν – as the lengths of these words increase, the mean-payoff value of
the resulting play gets closer to the average of the normalized distances,
and thus eventually stabilizes to a value greater than or equal to ν (this
happens no matter how large is the lookahead parameter k). Conversely,
if player Output wins the 1-lookahead regular game, then he must be able
to enforce a play w = ( q0r0 )( q1r1 )( q2r2 ) . . . that violates Conditions 3.a), 3.b),
and 3.c’). In particular, from some point onwards, only finitely many words
ui ∈ L (Rqi,qi+1) have normalized distance from L (Tri,ri+1) greater than ν –
in this case we will show that Eve can use a sufficient amount of lookahead
to enforce a play in the streaming repair game with value at most ν.

Let us assume that player Input wins the 1-lookahead regular game on
L and let us fix a lookahead parameter k for the streaming repair game.
Using Input’s winning strategy, we have to derive a strategy for Adam, for
each lookahead parameter k ∈ N, that induces a mean-payoff value greater
than ν over the arena Ak−lookaheadR,T . We fix k ∈ N and we assume that at the
beginning player Input has chooses two consecutive elements q0, q1 ∈ Q, with
q0 initial state of R. After Output’s response, which we assume to be the
initial state r0 of T , Input chooses a third element q2 ∈ Q. Thus, the partial
play constructed so far is

( q0r0 )( q1 )( q2 ).
We know that both languages L (Rq0,q1) and L (Rq1,q2) contain arbitrarily
long words, so we can use them to construct the first moves of Adam in
the streaming repair game. Precisely, we fix two words u1 ∈ L (Rq0,q1) and
u2 ∈ L (Rq1,q2), with ∣u1∣ ≥ 1 and ∣u2∣ ≥ ∣u1∣+k, and we denote by a1, . . . , a∣u1∣+k
the first ∣u1∣ + k symbols of the juxtaposition u1 u2. We define the first ∣u1∣
moves of Adam’s strategy as follows:

� at the 1st round, Adam moves from vertex (q0, r0, a1 . . . ak) to vertex
(δ(q0, a1), r0, a1 . . . ak+1);

� at the 2nd round, after Eve has moved from (δ(q0, a1), r0, a1 . . . ak+1)
to some vertex (δ(q0, a1), δ(r0, v1), a2 . . . ak+1), for some v1 ∈ ∆∗, Adam
moves to the next vertex (δ(q0, a1a2), δ(r0, v1), a2 . . . ak+2);

� in general, at the i-th round, with 1 ≤ i ≤ ∣u1∣, Adam moves from any
vertex of the form (δ(q0, a1 . . . ai−1), δ(r0, v1 . . . vi−1), ai . . . ak+i−1) to the
vertex (δ(q0, a1 . . . ai), δ(r0, v1 . . . vi−1), ai . . . ak+i).
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Now, recall that q1 = δ(a1 . . . a∣u1∣) and hence, after the first ∣u1∣
rounds, the streaming repair game must reach a vertex of the form
(q1, r1, a∣u1∣+1 . . . a∣u1∣+k), for some r1 = δ(r0, v1 . . . v∣u1∣) and some prefix
a∣u1∣+1 . . . a∣u1∣+k of u2 ∈ L (Rq1,q2). Moreover, the partial cost incurred by
Eve so far is

∑
1≤i≤∣u1∣

dist(ai, vi) ≥ dist(u1, v1 . . . v∣u1∣) ≥ min
v∈L (Tr0,r1)

dist(u1, v).

The definition of Adam’s strategy for the subsequent rounds follows similar
arguments. Specifically, we assume that the current partial play of the regular
game is

( q0r0 ) . . . ( qiri )( qi+1 )
and that the current position of the streaming repair game is
(qi, ri, ai,1 . . . ai,k), where ai,1 . . . ai,k is a prefix of some word ui+1 ∈ L (Rqi,qi+1).
We then look at the next move induced by Input’s strategy, which adds a new
state qi+2 to the partial play, and we choose another word ui+2 ∈ L (Rqi+1,qi+2)
of length ∣ui+2∣ ≥ ∣ui+1∣ + k. Accordingly, we define the moves of Adam’s
strategy for the next ∣ui+1∣ rounds using the first ∣ui+1∣ + k letters in the jux-
taposition ui+1 ui+2.

Now, consider a play π of the mean-payoff game that results from Adam’s
strategy. We know form the previous arguments that the play π can be
factorized into an infinite sequence π0, π1, π2, . . . of sub-plays of the form

(q0, r0, a1 . . . ak) . . .
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

π0

(q1, r1, an1+1 . . . an1+k) . . .´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
π1

(q2, r2, an2+1 . . . an2+k) . . .´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
π2

. . .

where w = ( q0r0 )( q1r1 )( q2r2 ) . . . is a corresponding play in the regular game that
follows Input’s winning strategy. Moreover, the repair cost incurred in each
sub-play πi is at least

min
v∈L (Tri,ri+1)

dist(ui, v)

where ui is any word from L (Rqi,qi+1) of length ∣πi∣
2 . Without loss of gener-

ality, we can further assume that Adam has chosen the words u0, u1, u2, . . .
in such a way that the following additional property is satisfied:

lim inf
i→∞

min
v∈L (Tri,ri+1)

dist(ui, v)
∣ui∣

= lim inf
i→∞

acost(L (Rqi,qi+1),L (Tri,ri+1)).
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Recall that r0 is the initial state of T (so Condition 3.a) is violated) and
each language L (Tri−1,ri) is non-empty (so Condition 3.b) is violated). As
the play is won by player Input, Condition 3.c) must hold. This implies

lim inf
i→∞

acost(L (Rqi,qi+1),L (Tri,ri+1)) ≥ ν.

Putting all together, we obtain that Adam can enforce a play π = π0 π1 π2 . . .
with mean-payoff value greater than or equal to ν

2 :

2 ⋅ νπAdam ≥ lim inf
i→∞

min
v∈L (Tri,ri+1)

dist(ui, v)

= lim inf
i→∞

acost(L (Rqi,qi+1),L (Tri,ri+1))
≥ ν.

This proves that 2 ⋅ νAk−lookahead
R,T

≥ 2 ⋅ νπAdam ≥ ν.

As for the converse direction, we assume that player Output wins the
1-lookahead regular game on L. We will use Output’s winning strategy to
construct a strategy for Eve that guarantees a value less than ν in the mean-
payoff game over the arena Ak−lookaheadR,T , where k is a sufficiently large number.
In order to establish what ‘sufficiently large’ means, we use Lemma 7 to devise
the existence of a natural number ` > ∣Q∣ such that, for all states q, q′ ∈ Q
and r, r′ ∈ Q′ and all words u ∈ L (Rq,q′) of length at least `,

acost(L (Rq,q′),L (Tr,r′)) < ν implies min
v∈L (Tr,r′)

dist(u, v)
∣u∣ < ν (�)

(technically speaking, the number ` can be defined as the maximum among
the number of states in R plus 1 and the numbers maxlengthνRq,q′ ,Tr,r′ that are
obtained from Lemma 7 when considering all possible DFA Rq,q′ , Tr,r′ such
that acost(L (Rq,q′),L (Tr,r′)) < ν).
Accordingly, we define kmax = 2` and we fix a lookahead parameter k ≥ kmax

for the rest of this proof.
We now turn to the definition of Eve’s strategy for the mean-payoff game

over Ak−lookaheadR,T . Roughly, the idea is look at each move of player Output and
construct from it ` consecutive moves of Eve. Suppose that, at the beginning,
Adam chooses an edge of the form

(q0, r0, a1 . . . ak) AdamÐÐ→ (δ(q0, a1), r0, a1 . . . ak+1),

with q0 initial state of R, r0 initial state of T , and a1, . . . , ak+1 ∈ Σ. We
define q1 = δ(q0, a1 . . . a`) and q2 = δ(q1, a`+1 . . . a2`), and we look at the move
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induced by Output’s winning strategy in the corresponding partial play of
the 1-lookahead regular game:

( q0r0 ) ( q1 ) ( q2 ) OutputÐÐ→ ( q0r0 ) ( q1r1 ) ( q2 ).
We then choose some words v1, . . . , v` ∈ ∆∗ whose juxtaposition v1 . . . v` be-
longs to L (Tr0,r1) and for which the aggregate distance ∑1≤j≤` dist(aj, vj) is
minimized (in particular, this aggregate distance must be equal to the dis-
tance of a1 . . . a` from L (Tr0,r1)). Accordingly, we define the first ` moves of
Eve’s strategy as follows:

� at the 1st round, Eve moves from vertex (δ(q0, a1), r0, a1 . . . ak+1) to
vertex (δ(q0, a1), δ(r0, v1), a2 . . . ak+1);

� at the 2nd round, after Adam has moved
from (δ(q0, a1), δ(r0, v1), a2 . . . ak+1) to some vertex
(δ(q0, a1a2), δ(r0, v1), a2 . . . ak+2), Eve moves to the next vertex
(δ(q0, a1a2), δ(r0, v1v2), a3 . . . ak+2);

� in general, at the j-th round, with 1 ≤ j ≤ l, Eve moves from any ver-
tex of the form (δ(q0, a1 . . . aj), δ(r0, v1 . . . vj−1), ai . . . aj+k) to the vertex
(δ(q0, a1 . . . aj), δ(r0, v1 . . . vj), aj+1 . . . aj+k).

Note that after the first ` rounds, a vertex of the form (q1, r1, a`+1 . . . a`+k)
The strategy for Eve for the subsequent rounds is defined in a similar way,
that is, by translating Adam’s moves to corresponding moves of player Input
and using Output’s response to construct blocks of ` consecutive moves of
Eve.

Below, we prove that the defined strategy for Eve guarantees a mean-
payoff value less than ν

2 . Let π be an infinite play of the mean-payoff game
induced by Eve’s strategy and let us focus on the sequence of vertices x1, x2,
x3, . . . that are reached at the beginnings of rounds 1, ` + 1, 2` + 1, . . . :

π = (q0, r0, a1 . . . ak)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

x1

. . . (q1, r1, a`+1 . . . a`+k)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

x2

. . . (q2, r2, a2`+1 . . . a2`+k)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

x3

. . . .

By construction, at each round i` + 1, with i ∈ N, the `-character prefix
ai`+1 . . . ai`+k of the word that appears at vertex xi` belongs to the language
L (Rqi,qi+1). Moreover, the 2` consecutive moves that are taken alternatively
by Adam and Eve at rounds i` + 1, . . . , (i + 1)` induce a cost

ci = ∑
1≤j≤`

dist(ai`+j, vi`+j) = min
v∈L (Tri,ri+1)

dist(ai`+1 . . . a(i+1)`, v).
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Now, consider the corresponding play in the 1-lookahead regular game:

w = ( q0r0 ) ( q1r1 ) ( q2r2 ) . . . .

Note that w follows Output’s winning strategy, so it cannot belong to the
language L. We know that state q0 is initial in R and hence w satisfies
Condition 1. above. We claim that w satisfies Condition 2. as well. Indeed,
for all i ∈ N, we have that the word ai`+1 . . . a(i+1)` belongs to the language
L (Rqi,qi+1) and has length greater than ∣Q∣ (recall that ` > ∣Q∣). As we tacitly
assumed that all states in R can reach non-transient states (cf. Remark 2 in
Section 5.2) it follows that Rqi,qi+1 visits some same state twice when parsing
ai`+1 . . . a(i+1)`, and hence ∣L (Rqi,qi+1)∣ = ∞. As w satisfies both Condition 1.
and Condition 2. and w /∈ L, we know that w must violate Condition 3.c’).
Therefore, for all but finitely many i ∈ N, we have

acost(L (Rqi,qi+1),L (Tri,ri+1)) < ν.

We now recall the definition of ` and, in particular, the fact that it satisfies
Property (�) above, namely, for all states q, q′ ∈ Q and r, r′ ∈ Q′ and all
words u ∈ L (Rq,q′) of length at least `, acost(L (Rq,q′),L (Tr,r′)) < ν implies

min
v∈L (Tr,r′)

dist(u,v)
∣u∣ < ν. This means that for all but finitely many i ∈ N,

min
v∈L (Tri,ri+1)

dist(ai`+1 . . . a(i+1)`, v)
`

< ν.

Putting all together, we have that Eve’s strategy bounds the mean-payoff
value of the game by

νπEve = lim sup
n→∞

∑n
i=1 ci
2n`

< ν

2
.

and hence 2 ⋅ νAR,T ≤ 2 ⋅ νπEve < ν.

We conclude with the proof of Theorem 5.

Proof of Theorem 5. Thanks to Lemma 8, the problem of deciding whether

∃k ∈ N. acostaggrk−lookahead(L (R),L (T )) < ν

is immediately reduced to the problem of deciding whether player Output
wins the 1-lookahead regular game on L, where L is a suitable regular ω-
language computable from R, T , and ν in double exponential time.
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6. Conclusions

We have addressed the problem of computing the asymptotic cost of re-
pairing regular languages in the non-streaming and streaming settings. It
is surprising that the asymptotic cost in both settings is rational and com-
putable.

In the non-streaming setting, we proved that the threshold problem for
the asymptotic cost is between PSpace and coNExp. We leave as an open
problem the unclosed gap between our lower and upper bounds.

In the streaming setting, where a finite lookahead is given, we derive
optimal online algorithms for editing one language into another, which are
quite distinct from traditional edit distance algorithms based on dynamic
programming.

We also began an investigation of the best repair cost for arbitrary finite
lookup. We leave open the problem of computing the infimum of the asymp-
totic costs of all such edit strategies, giving here only a decision procedure
for the strict threshold problem.
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